On the number of p-hypergeometric solutions of KZ equations

被引:0
作者
Alexander Varchenko
机构
[1] University of North Carolina at Chapel Hill,Department of Mathematics
[2] Lomonosov Moscow State University,Faculty of Mathematics and Mechanics
来源
The Ramanujan Journal | 2023年 / 62卷
关键词
equations; Master polynomials; -Hypergeometric solutions; Primary 11D79; Secondary 32G34; 33C60; 33E50;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that solutions of the KZ equations can be written in the form of multidimensional hypergeometric integrals. In 2017 in a joint paper of the author with V. Schechtman, the construction of hypergeometric solutions was modified, and solutions of the KZ equations modulo a prime number p were constructed. These solutions modulo p, called the p-hypergeometric solutions, are polynomials with integer coefficients. A general problem is to determine the number of independent p-hypergeometric solutions and understand the meaning of that number. In this paper, we consider the KZ equations associated with the space of singular vectors of weight n-2r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2r$$\end{document} in the tensor power W⊗n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{\otimes n}$$\end{document} of the vector representation of sl2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {sl}_2$$\end{document}. In this case the hypergeometric solutions of the KZ equations are given by r-dimensional hypergeometric integrals. We consider the module of the corresponding p-hypergeometric solutions, determine its rank, and show that the rank is equal to the dimension of the space of suitable square integrable differential r-forms.
引用
收藏
页码:307 / 327
页数:20
相关论文
共 50 条
  • [41] Solutions with a prescribed number of zeros for nonlinear Schrodinger systems
    Kim, Seunghyeok
    Kwon, Ohsang
    Lee, Youngae
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 : 74 - 88
  • [42] MULTIPLICITY THEOREMS FOR (p, 2)-EQUATIONS
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (07) : 1297 - 1323
  • [43] Singular Neumann (p, q)-equations
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    POSITIVITY, 2020, 24 (04) : 1017 - 1040
  • [44] Singular Dirichlet (p, q)-Equations
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (04)
  • [45] On a Class of Parametric (p, 2)-equations
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 75 (02) : 193 - 228
  • [46] Axisymmetric solutions to the convective Brinkman-Forchheimer equations
    Yu, Huan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (02)
  • [47] LINEAR ESTIMATES FOR SOLUTIONS OF QUADRATIC EQUATIONS IN FREE GROUPS
    Kharlampovich, Olga
    Vdovina, Alina
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (01)
  • [48] On m-Interlacing Solutions of Linear Difference Equations
    Abramov, S. A.
    Barkatou, M. A.
    Khmelnov, D. E.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, PROCEEDINGS, 2009, 5743 : 1 - +
  • [49] On the number of monochromatic solutions of integer linear systems on abelian groups
    Serra, Oriol
    Vena, Lluis
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 459 - 473
  • [50] Nusselt Number Criteria Equations in the Cross Flow over Single Tube
    Skočilasová, Blanka
    Skočilas, Jan
    Manufacturing Technology, 2015, 15 (06): : 1