Linear separation and approximation by minimizing the sum of concave functions of distances

被引:0
|
作者
Frank Plastria
Emilio Carrizosa
机构
[1] Vrije Universiteit Brussel,MOSI
[2] Universidad de Sevilla,Fac. de Matemáticas
来源
4OR | 2014年 / 12卷
关键词
Linear separation; Linear approximation; Distance minimization; 90B85; 62-07; 68U05;
D O I
暂无
中图分类号
学科分类号
摘要
One recently proposed criterion to separate two data sets in Classification is to use a hyperplane that minimizes the sum of distances to it from all the misclassified data points, where misclassification means lying on the wrong side of the hyperplane, or rather in the wrong halfspace. In this paper we study an extension of this problem: we seek the hyperplane minimizing the sum of concave nondecreasing functions of the distances of misclassified points to it. It is shown that an optimal hyperplane exists containing at least d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} affinely independent points. This extends the result known for the minimization of the sum of distances, and enables to use combinatorial local-search heuristics for this problem. As a corollary, the same result is obtained for the approximation problem in which a hyperplane minimizing the sum of concave nondecreasing functions of the distances from a set of data points is sought.
引用
收藏
页码:77 / 85
页数:8
相关论文
共 50 条
  • [21] MINIMIZING LINEAR INEQUALITY CONSTRAINED MAHALANOBIS DISTANCES
    WOLLAN, PC
    DYKSTRA, R
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1987, 36 (02): : 234 - 240
  • [22] Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints
    Guo, K.
    Han, D. R.
    Wu, T. T.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (08) : 1653 - 1669
  • [23] A New Primal-Dual Algorithm for Minimizing the Sum of Three Functions with a Linear Operator
    Yan, Ming
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (03) : 1698 - 1717
  • [24] SOLUTION OF INVERSE PROBLEM OF MAGNETIC PROSPECTING BY MEANS OF MINIMIZING SUM OF LINEAR FUNCTIONS MODULES
    ZAVOISKII, VM
    NEIZHSAL, YE
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA B-GEOLOGICHNI KHIMICHNI TA BIOLOGICHNI NAUKI, 1975, (07): : 582 - 585
  • [25] A METHOD FOR MINIMIZING A SUM OF SQUARES OF NON-LINEAR FUNCTIONS WITHOUT CALCULATING DERIVATIVES
    POWELL, MJD
    COMPUTER JOURNAL, 1965, 7 (04): : 303 - 307
  • [26] On linear approximation of modulo sum
    Maximov, A
    FAST SOFTWARE ENCRYPTION, 2004, 3017 : 483 - 484
  • [27] Minimizing Piecewise-Concave Functions Over Polyhedra
    Gaudioso, Manlio
    Giallombardo, Giovanni
    Miglionico, Giovanna
    MATHEMATICS OF OPERATIONS RESEARCH, 2018, 43 (02) : 580 - 597
  • [28] Least Squares Approximation to Lognormal Sum Distribution via Piecewise Linear Functions
    Zhao, Lian
    Ding, Jiu
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 1315 - +
  • [29] Accelerated Gradient Sliding for Minimizing a Sum of Functions
    Dvinskikh, D. M.
    Omelchenko, S. S.
    Gasnikov, A. V.
    Tyurin, A. I.
    DOKLADY MATHEMATICS, 2020, 101 (03) : 244 - 246
  • [30] Accelerated Gradient Sliding for Minimizing a Sum of Functions
    D. M. Dvinskikh
    S. S. Omelchenko
    A. V. Gasnikov
    A. I. Tyurin
    Doklady Mathematics, 2020, 101 : 244 - 246