Elliptic genera of ALE and ALF manifolds from gauged linear sigma models

被引:0
作者
Jeffrey A. Harvey
Sungjay Lee
Sameer Murthy
机构
[1] Enrico Fermi Institute,Department of Mathematics
[2] University of Chicago,undefined
[3] King’s College London,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
Supersymmetric gauge theory; Conformal Field Models in String Theory; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
We compute the equivariant elliptic genera of several classes of ALE and ALF manifolds using localization in gauged linear sigma models. In the sigma model computation the equivariant action corresponds to chemical potentials for U(1) currents and the elliptic genera exhibit interesting pole structure as a function of the chemical potentials. We use this to decompose the answers into polar terms that exhibit wall crossing and universal terms. We compare our results to previous results on the large radius limit of the Taub-NUT elliptic genus and also discuss applications of our results to counting of BPS world-sheet spectrum of monopole strings in the 5d N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} super Yang-Mills theory and self-dual strings in the 6d N=2,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,\ 0\right) $$\end{document} theories.
引用
收藏
相关论文
共 149 条
[1]  
Eguchi T(2004)SL(2, R)/U(1) supercoset and elliptic genera of noncompact Calabi-Yau manifolds JHEP 05 014-undefined
[2]  
Sugawara Y(2010)The non-compact elliptic genus: mock or modular JHEP 06 104-undefined
[3]  
Troost J(2011)Non-holomorphic modular forms and SL(2, R)/U(1) superconformal field theory JHEP 03 107-undefined
[4]  
Eguchi T(2011)A twisted non-compact elliptic genus JHEP 03 067-undefined
[5]  
Sugawara Y(2014)Elliptic genera and real Jacobi forms JHEP 01 082-undefined
[6]  
Ashok SK(2014)Localization and real Jacobi forms JHEP 04 119-undefined
[7]  
Troost J(2014)A holomorphic anomaly in the elliptic genus JHEP 06 165-undefined
[8]  
Ashok SK(1978)Axial vector anomalies and the index theorem in charged Schwarzschild and Taub-NUT spaces Nucl. Phys. B 141 432-undefined
[9]  
Troost J(1981)The η invariant for charged spinors in Taub-NUT J. Phys. A 14 L133-undefined
[10]  
Ashok SK(1978)Gravitational multi-instantons Phys. Lett. B 78 430-undefined