Differential spectra of a class of power permutations with characteristic 5

被引:0
作者
Haode Yan
Chengju Li
机构
[1] Southwest Jiaotong University,School of Mathematics
[2] Guangxi Key Laboratory of Cryptography and Information Security,Shanghai Key Laboratory of Trustworthy Computing
[3] East China Normal University,undefined
[4] State Key Laboratory of Integrated Services and Networks,undefined
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Power permutation; Differential uniformity; Differential spectrum; Elliptic curve; 11T06; 94A60; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Let n be a positive integer and F(x)=xd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(x)=x^d$$\end{document} over F5n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{5^n}$$\end{document}, where d=5n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\frac{5^n-3}{2}$$\end{document}. In this paper, we study the differential properties of the power permutation F(x). It is shown that F(x) is differentially 4-uniform when n is even, and differentially 5-uniform when n is odd. Based on some knowledge on elliptic curves over finite fields, the differential spectrum of F(x) is also determined.
引用
收藏
页码:1181 / 1191
页数:10
相关论文
共 41 条
[1]  
Biham E(1991)Differential cryptanalysis of DES-like cryptosystems J. Cryptol. 4 3-72
[2]  
Shamir A(2010)Differential properties of power functions Int. J. Inf. Coding Theory 1 149-170
[3]  
Blondeau C(2011)Differential properties of IEEE Trans. Inf. Theory 57 8127-8137
[4]  
Canteaut A(2014)More differentially Des. Codes Cryptogr. 73 487-505
[5]  
Charpin P(2013)-uniform power functions Finite Fields Appl. 21 11-29
[6]  
Blondeau C(2001)Differential spectrum of some power functions in odd prime characteristic IEEE Trans. Inf. Theory 47 1473-1481
[7]  
Canteaut A(1999)Ternary m-sequences with three-valued cross-correlation function: new decimations of Welch and Niho type IEEE Trans. Inf. Theory 45 475-485
[8]  
Charpin P(1997)New families of almost perfect nonlinear power mappings Appl. Algebra Engrg. Comm. Comput. 8 363-370
[9]  
Blondeau C(2020)Some power mappings with low differential uniformity Adv. Math. Commun. 64 101660-125
[10]  
Perrin L(2020)The differential spectrum of a class of power functions over finite fields Finite Fields Appl. 48 117-1621