Characterizations of Admissible Weighted Bergman Spaces on the Unit Ball

被引:0
作者
Sei-Ichiro Ueki
机构
[1] Tokai University,Department of Mathematics, Faculty of Science
来源
Computational Methods and Function Theory | 2020年 / 20卷
关键词
Bergman spaces; Admissible weight; Invariant gradient; Riesz measure; Primary 32A36; Secondary 30H20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will give characterizations for weighted Bergman spaces with admissible weights. The first criterion is established by the invariant gradient on the unit ball of CN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^N$$\end{document}. The other criterion is given by the radial derivative of holomorphic functions in the unit ball.
引用
收藏
页码:95 / 109
页数:14
相关论文
共 13 条
  • [1] Beatrous F(1985)Characterizations of spaces of holomorphic functions in the ball Kodai Math. J. 8 36-51
  • [2] Burbea J(2012)Compact composition operators on weighted Hilbert spaces of analytic functions J. Math. Anal. Appl. 386 718-727
  • [3] Kellay K(1995)Characterizations of Bergman spaces and Bloch spaces in the unit ball of Trans. Am. Math. Soc. 347 4301-4313
  • [4] Lefèvre P(2002)On an area inequality and weighted integrals of analytic functions Results Math. 41 386-393
  • [5] Ouyang C(2002)A note on weighted integrals of analytic functions Bull. Greek Math. Soc. 46 3-9
  • [6] Yang W(2002)Weighted integrals of holomorphic functions in Complex Var. 47 821-838
  • [7] Zhao R(2004)Weighted integrals of holomorphic functions on the polydisc Z. Anal. Anwendungen 23 577-587
  • [8] Stević S(2004)Weighted integrals of holomorphic functions on the polydisc II Z. Anal. Anwendungen 23 775-782
  • [9] Stević S(1993)A characterization of Hardy spaces on the unit ball of J. Lond. Math. Soc. 48 126-136
  • [10] Stević S(undefined)undefined undefined undefined undefined-undefined