Strengthening Effect Algebras in a Logical Perspective: Heyting-Wajsberg Algebras

被引:0
作者
Martinvaldo Konig
机构
来源
International Journal of Theoretical Physics | 2014年 / 53卷
关键词
Effect algebra; Pseudoboolean effect algebra; Lattice-ordered effect algebra; MV-algebra; Heyting algebra; Heyting effect algebra; Stonean MV-algebra; Heyting-Wajsberg algebra; Decidability; Strong completeness; Deduction-detachment theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Heyting effect algebras are lattice-ordered pseudoboolean effect algebras endowed with a pseudocomplementation that maps on the center (i.e. Boolean elements). They are the algebraic counterpart of an extension of both Łukasiewicz many-valued logic and intuitionistic logic. We show that Heyting effect algebras are termwise equivalent to Heyting-Wajsberg algebras where the two different logical implications are defined as primitive operators. We prove this logic to be decidable, to be strongly complete and to have the deduction-detachment theorem.
引用
收藏
页码:3409 / 3422
页数:13
相关论文
共 25 条
[11]  
Ciucci D.(1995)Toward a formal language for unsharp properties Math. Jpn. 42 353-401
[12]  
Giuntini R.(1990)Congruence distributive varieties Tatra Mt. Math. Publ. 1 83-88
[13]  
Konig M.(undefined)D-posets of fuzzy sets undefined undefined undefined-undefined
[14]  
Chang C.C.(undefined)undefined undefined undefined undefined-undefined
[15]  
Chovanec F.(undefined)undefined undefined undefined undefined-undefined
[16]  
Kôpka F.(undefined)undefined undefined undefined undefined-undefined
[17]  
Foulis D.J.(undefined)undefined undefined undefined undefined-undefined
[18]  
Foulis D.J.(undefined)undefined undefined undefined undefined-undefined
[19]  
Bennett M.K.(undefined)undefined undefined undefined undefined-undefined
[20]  
Gispert J.(undefined)undefined undefined undefined undefined-undefined