Binary classification of pumpkin (Cucurbita pepo L.) seeds based on quality features using machine learning algorithms

被引:0
|
作者
Necati Çetin
Ewa Ropelewska
Sali Fidan
Şükrü Ülkücü
Pembe Saban
Seda Günaydın
Ali Ünlükara
机构
[1] Ankara University,Faculty of Agriculture, Department of Agricultural Machinery and Technologies Engineering
[2] Fruit and Vegetable Storage and Processing Department,Department of Plant Protection, Graduate School of Natural and Applied Science
[3] The National Institute of Horticultural Research,Faculty of Agriculture, Department of Biosystems Engineering
[4] Transitional Zone Agricultural Research Station,undefined
[5] Erciyes University,undefined
[6] Erciyes University,undefined
来源
European Food Research and Technology | 2024年 / 250卷
关键词
Pumpkin seed; Variety classification; Mass; Shape index; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
Mass, size, and shape attributes are important for the design of planters, breeding studies, and quality assessment. In recent years, machinery design and system development studies have taken these factors into consideration. The aim of this study is to explore classification models for four pumpkin seed varieties according to their physical characteristics by machine learning. Binary classification is important because it ensures that the quality characteristics of the seeds are very similar to each other. The pumpkin seed varieties of Develi, Sena Hanım, Türkmen, and Mertbey were discriminated in pairs. Five machine learning algorithms (Naïve Bayes, NB; support vector machine, SVM; random forest, RF; multilayer perceptron, MLP; and kNN, k-nearest neighbors) were applied to assess the classification performance. In all pairs, the pumpkin seed varieties of Develi and Mertbey were discriminated with the highest accuracies of 85.00% for the MLP model and 84.50% for the SVM model and 83.50% for the RF. In the MLP algorithm, TP rate reached to 0.790 for Develi and 0.910 for Mertbey, Precision to 0.898 for Develi and 0.813 for Mertbey, F-measure to 0.840 for Develi and 0.858 for Mertbey, PRC area to 0.894 for Develi and 0.896 for Mertbey, and ROC area to 0.907 for both varieties. Variety of pairs was followed by Sena Hanım and Türkmen (84.50%, MLP) and Türkmen and Mertbey (82.50%, SVM). For the selected input attributes, the highest mass (0.23 g), length (22.08 for Mertbey, 21.43 for Sena Hanım), and geometric mean diameter (8.79 mm) values were obtained from Sena Hanım variety, while shape index (3.40) from Mertbey variety. Multivariate statistical results showed that differences in attributes were significant (p < 0.01). Wilks’ lambda statistics found that the portion of the unexplained difference between groups was 46.60%. Develi and Sena Hanım varieties with the lowest Mahalanobis distance values had similar characteristics. Present results revealed that SVM and MLP may be used effectively and objectively for the classification of pumpkin seed varieties.
引用
收藏
页码:409 / 423
页数:14
相关论文
共 50 条
  • [31] Speech features-based Parkinson's disease classification using combined SMOTE-ENN and binary machine learning
    Dhanalakshmi, Samiappan
    Das, Sudeshna
    Senthil, Ramalingam
    HEALTH AND TECHNOLOGY, 2024, 14 (02) : 393 - 406
  • [32] Predicting the COVID-19 infection with fourteen clinical features using machine learning classification algorithms
    Arpaci, Ibrahim
    Huang, Shigao
    Al-Emran, Mostafa
    Al-Kabi, Mohammed N.
    Peng, Minfei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (08) : 11943 - 11957
  • [33] Automated detection and classification of printing sub-resolution assist features using machine learning algorithms
    Kohli, Kriti K.
    Jobes, Mark
    Graur, Ioana
    OPTICAL MICROLITHOGRAPHY XXX, 2017, 10147
  • [34] Predicting the COVID-19 infection with fourteen clinical features using machine learning classification algorithms
    Ibrahim Arpaci
    Shigao Huang
    Mostafa Al-Emran
    Mohammed N. Al-Kabi
    Minfei Peng
    Multimedia Tools and Applications, 2021, 80 : 11943 - 11957
  • [35] Malicious Webpage Classification Based on Web Content Features using Machine Learning and Deep Learning
    Raja, Saleem A.
    Sundarvadivazhagan, B.
    Vijayarangan, R.
    Veeramani, S.
    2022 INTERNATIONAL CONFERENCE ON GREEN ENERGY, COMPUTING AND SUSTAINABLE TECHNOLOGY (GECOST), 2022, : 314 - 319
  • [36] Object Features for Pixel-based Classification of Urban Areas Comparing Different Machine Learning Algorithms
    Wolf, Nils
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2013, (03): : 149 - 161
  • [37] Multi-Features Classification of SMD Screen in Smart Cities using Randomised Machine Learning Algorithms
    Ghafoor, Muhammad Imran
    Roomi, Muhammad Sohaib
    Aqeel, Mubashar
    Sadiq, Umaiz
    Bazai, Sibghat Ullah
    2ND INTERNATIONAL INFORMATICS AND SOFTWARE ENGINEERING CONFERENCE (IISEC), 2021,
  • [38] Cannabis sativa L. Spectral Discrimination and Classification Using Satellite Imagery and Machine Learning
    Bicakli, Fatih
    Kaplan, Gordana
    Alqasemi, Abduldaem S.
    AGRICULTURE-BASEL, 2022, 12 (06):
  • [39] Vehicle Auto-Classification Using Machine Learning Algorithms Based on Seismic Fingerprinting
    Ahmad, Ahmad Bahaa
    Saibi, Hakim
    Belkacem, Abdelkader Nasreddine
    Tsuji, Takeshi
    COMPUTERS, 2022, 11 (10)
  • [40] An Efficient Machine Learning-Based Fall Detection Algorithm using Local Binary Features
    Saleh, Majd
    Le Bouquin Jeannes, Regine
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 667 - 671