Sharp Bounds for the First Eigenvalue of a Fourth-Order Steklov Problem

被引:0
|
作者
Simon Raulot
Alessandro Savo
机构
[1] UMR 6085 CNRS-Université de Rouen,Laboratoire de Mathématiques R. Salem
[2] Sapienza Università di Roma,Dipartimento SBAI, Sezione di Matematica
来源
The Journal of Geometric Analysis | 2015年 / 25卷
关键词
Fourth-order Steklov problem; Eigenvalues; Harmonic functions; Lower bounds; 58J50; 35P15; 35J40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the biharmonic Steklov eigenvalue problem on a compact Riemannian manifold with smooth boundary. We give a sharp lower bound of the first eigenvalue of this problem, which depends only on the dimension, a lower bound of the Ricci curvature of the domain, a lower bound of the mean curvature of its boundary and the inner radius. The proof is obtained by estimating the isoperimetric ratio of non-negative subharmonic functions on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, which is of independent interest. We also give a comparison theorem for geodesic balls.
引用
收藏
页码:1602 / 1619
页数:17
相关论文
共 50 条
  • [31] On an Ambrosetti-Prodi type problem for a class of fourth-order ODEs involving Dirac weights
    Zhao, Jiao
    Ma, Ruyun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [32] Sharp bounds for Dirichlet eigenvalue ratios of the Camassa-Holm equations
    Chu, Jifeng
    Meng, Gang
    MATHEMATISCHE ANNALEN, 2024, 388 (02) : 1205 - 1224
  • [33] Lower bounds for the first eigenvalue of the magnetic Laplacian
    Colbois, Bruno
    Savo, Alessandro
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (10) : 2818 - 2845
  • [34] Lower bounds for the first eigenvalue of Laplacian on graphs
    Meng, LianChen
    Lin, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (01)
  • [35] EXISTENCE OF SOLUTIONS FOR FOURTH-ORDER PDES WITH VARIABLE EXPONENTS
    El Amrouss, Abdelrachid
    Moradi, Fouzia
    Moussaoui, Mimoun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [36] Fourth-order tensor Riccati equations with the Einstein product
    Miao, Yun
    Wei, Yimin
    Chen, Zhen
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (10): : 1831 - 1853
  • [37] Discrete fourth-order Sturm-Liouville problems
    Ben-Artzi, Matania
    Croisille, Jean-Pierre
    Fishelov, Dalia
    Katzir, Ron
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1485 - 1522
  • [38] REILLY-TYPE UPPER BOUNDS FOR THE p-STEKLOV PROBLEM ON SUBMANIFOLDS
    Roth, Julien
    Upadhyay, Abhitosh
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 108 (03) : 492 - 503
  • [39] Semidefinite programming and eigenvalue bounds for the graph partition problem
    van Dam, Edwin R.
    Sotirov, Renata
    MATHEMATICAL PROGRAMMING, 2015, 151 (02) : 379 - 404
  • [40] Semidefinite programming and eigenvalue bounds for the graph partition problem
    Edwin R. van Dam
    Renata Sotirov
    Mathematical Programming, 2015, 151 : 379 - 404