Sharp Bounds for the First Eigenvalue of a Fourth-Order Steklov Problem

被引:0
|
作者
Simon Raulot
Alessandro Savo
机构
[1] UMR 6085 CNRS-Université de Rouen,Laboratoire de Mathématiques R. Salem
[2] Sapienza Università di Roma,Dipartimento SBAI, Sezione di Matematica
来源
The Journal of Geometric Analysis | 2015年 / 25卷
关键词
Fourth-order Steklov problem; Eigenvalues; Harmonic functions; Lower bounds; 58J50; 35P15; 35J40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the biharmonic Steklov eigenvalue problem on a compact Riemannian manifold with smooth boundary. We give a sharp lower bound of the first eigenvalue of this problem, which depends only on the dimension, a lower bound of the Ricci curvature of the domain, a lower bound of the mean curvature of its boundary and the inner radius. The proof is obtained by estimating the isoperimetric ratio of non-negative subharmonic functions on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, which is of independent interest. We also give a comparison theorem for geodesic balls.
引用
收藏
页码:1602 / 1619
页数:17
相关论文
共 50 条
  • [21] A C0 linear finite element method for two fourth-order eigenvalue problems
    Chen, Hongtao
    Guo, Hailong
    Zhang, Zhimin
    Zou, Qingsong
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 2120 - 2138
  • [22] Nodal solutions for a fourth-order two-point boundary value problem
    Ma, RY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (01) : 254 - 265
  • [23] Trace regularization problem for a fourth-order differential operator on separable Banach space
    Baksi, Ozlem
    Sezer, Yonca
    Caliskan, Seda K.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) : 4578 - 4591
  • [24] Isoparametric finite-element approximation of a Steklov eigenvalue problem
    Andreev, AB
    Todorov, TD
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) : 309 - 322
  • [25] THE ASYMPTOTIC BEHAVIOUR OF THE p(x)-LAPLACIAN STEKLOV EIGENVALUE PROBLEM
    Yu, Lujuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (07): : 2621 - 2637
  • [26] Theoretical and computational perspectives on the eigenvalues of fourth-order fractional Sturm-Liouville problem
    Al-Mdallal, Qasem
    Al-Refai, Mohammed
    Syam, Muhammed
    Al-Srihin, Moh'd Khier
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1548 - 1564
  • [27] Fourth-order moment bounding the eigenvalues of a matrix
    Gupta, Madhu
    Sharma, S. R.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (02)
  • [28] Eigenvalues of the Wentzell-Laplace operator and of the fourth order Steklov problems
    Xia, Changyu
    Wang, Qiaoling
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (10) : 6486 - 6506
  • [29] A simple approach for determining the eigenvalues of the fourth-order Sturm-Liouville problem with variable coefficients
    Huang, Yong
    Chen, Jian
    Luo, Qi-Zhi
    APPLIED MATHEMATICS LETTERS, 2013, 26 (07) : 729 - 734
  • [30] Analysis of a fourth-order scheme for a three-dimensional convection-diffusion model problem
    Gopaul, Ashvin
    Bhuruth, Muddun
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (06): : 2075 - 2094