Sharp Bounds for the First Eigenvalue of a Fourth-Order Steklov Problem

被引:0
作者
Simon Raulot
Alessandro Savo
机构
[1] UMR 6085 CNRS-Université de Rouen,Laboratoire de Mathématiques R. Salem
[2] Sapienza Università di Roma,Dipartimento SBAI, Sezione di Matematica
来源
The Journal of Geometric Analysis | 2015年 / 25卷
关键词
Fourth-order Steklov problem; Eigenvalues; Harmonic functions; Lower bounds; 58J50; 35P15; 35J40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the biharmonic Steklov eigenvalue problem on a compact Riemannian manifold with smooth boundary. We give a sharp lower bound of the first eigenvalue of this problem, which depends only on the dimension, a lower bound of the Ricci curvature of the domain, a lower bound of the mean curvature of its boundary and the inner radius. The proof is obtained by estimating the isoperimetric ratio of non-negative subharmonic functions on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, which is of independent interest. We also give a comparison theorem for geodesic balls.
引用
收藏
页码:1602 / 1619
页数:17
相关论文
共 32 条
[1]  
Antunes PRS(2013)Convex shape optimization for the least biharmonic Steklov eigenvalue ESAIM Control Optim. Calc. Var. 19 385-403
[2]  
Gazzola F(2006)Positivity preserving property for a class of biharmonic elliptic problems J. Differ. Equ. 229 1-23
[3]  
Berchio E(2009)On the first eigenvalue of a fourth order Steklov problem Calc. Var. 35 103-131
[4]  
Gazzola F(2011)The first biharmonic Steklov eigenvalue: positivity preserving and shape optimization Milan J. Math. 79 247-258
[5]  
Mitidieri E(1975)Eigenvalue comparison theorems and its geometric applications Math. Z. 143 289-297
[6]  
Bucur D(2005)On a fourth order Steklov eigenvalue problem Analysis 25 315-332
[7]  
Ferrero A(1988)Inégalités isopérimétriques et analytiques sur les variétés riemanniennes Astérisque 163–164 31-91
[8]  
Gazzola F(2004)Eigenvalue and gap estimates for the Laplacian acting on Trans. Am. Math. Soc. 356 319-344
[9]  
Bucur D(1978)-forms Ann. Sci. Éc. Norm. Supér. 11 451-470
[10]  
Gazzola F(1983)A general comparison theorem with applications to volume estimates for submanifolds J. Math. Soc. Jpn. 35 117-131