Sharp Bounds for the First Eigenvalue of a Fourth-Order Steklov Problem

被引:0
|
作者
Simon Raulot
Alessandro Savo
机构
[1] UMR 6085 CNRS-Université de Rouen,Laboratoire de Mathématiques R. Salem
[2] Sapienza Università di Roma,Dipartimento SBAI, Sezione di Matematica
来源
The Journal of Geometric Analysis | 2015年 / 25卷
关键词
Fourth-order Steklov problem; Eigenvalues; Harmonic functions; Lower bounds; 58J50; 35P15; 35J40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the biharmonic Steklov eigenvalue problem on a compact Riemannian manifold with smooth boundary. We give a sharp lower bound of the first eigenvalue of this problem, which depends only on the dimension, a lower bound of the Ricci curvature of the domain, a lower bound of the mean curvature of its boundary and the inner radius. The proof is obtained by estimating the isoperimetric ratio of non-negative subharmonic functions on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, which is of independent interest. We also give a comparison theorem for geodesic balls.
引用
收藏
页码:1602 / 1619
页数:17
相关论文
共 50 条
  • [1] Sharp Bounds for the First Eigenvalue of a Fourth-Order Steklov Problem
    Raulot, Simon
    Savo, Alessandro
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (03) : 1602 - 1619
  • [2] Nodal solutions for a nonlinear fourth-order eigenvalue problem
    Ru Yun Ma
    Bevan Thompson
    Acta Mathematica Sinica, English Series, 2008, 24 : 27 - 34
  • [3] Nodal solutions for a nonlinear fourth-order eigenvalue problem
    Ma, Ru Yun
    Thompson, Bevan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (01) : 27 - 34
  • [5] A fourth-order eigenvalue problem arising in viscoelastic flow
    Olagunju, DO
    APPLIED MATHEMATICS LETTERS, 2005, 18 (07) : 805 - 810
  • [6] E-eigenvalue Localization Sets for Fourth-Order Tensors
    Jianxing Zhao
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1685 - 1707
  • [7] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Yan Zhao
    Chuanxi Wu
    Jing Mao
    Feng Du
    Revista Matemática Complutense, 2020, 33 : 389 - 414
  • [8] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Zhao, Yan
    Wu, Chuanxi
    Mao, Jing
    Du, Feng
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (02): : 389 - 414
  • [9] Upper Bounds for the First Non-zero Steklov Eigenvalue via Anisotropic Mean Curvatures
    Qun Chen
    Jianghai Shi
    Results in Mathematics, 2022, 77
  • [10] Upper Bounds for the First Non-zero Steklov Eigenvalue via Anisotropic Mean Curvatures
    Chen, Qun
    Shi, Jianghai
    RESULTS IN MATHEMATICS, 2022, 77 (01)