A numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection-diffusion equation

被引:11
作者
Chen C.-M. [1 ]
Liu F. [2 ]
机构
[1] School of Mathematical Science, Xiamen University
[2] School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4001
关键词
Convergence; Fourier analysis; Fractional advection-diffusion equation; Solvability; Stability; Three-dimension;
D O I
10.1007/s12190-008-0168-7
中图分类号
学科分类号
摘要
In this paper, a numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection diffusion equation is presented. The convergence and stability of the numerical approximation method are discussed by a new technique of Fourier analysis. The solvability of the numerical approximation method also is analyzed. Finally, applying Richardson extrapolation technique, a high-accuracy algorithm is structured and the numerical example demonstrated the theoretical results. © 2008 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:219 / 236
页数:17
相关论文
共 39 条
[1]  
Anh V.V., Leonenko N.N., Spectral analysis of fractional kinetic equations with random data, J. Stat. Phys., 104, pp. 1349-1387, (2001)
[2]  
Baeumer B., Meerschaert M.M., Benson D.A., Wheatsraft S.W., Subordinated advection-dispersion equation for contaminant transport, Water Resour. Res., 37, 6, pp. 1543-1550, (2001)
[3]  
Balakrishnan V., Anomalous diffusion in one dimension, Physica A, 132, pp. 569-580, (1985)
[4]  
Barkai E., Silbey R.J., Fractional Kramers equation, J. Phys. Chem. B, 104, pp. 3866-3874, (2000)
[5]  
Benson D.A., Wheatcraft S.W., Meerschaert M.M., Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 6, pp. 1403-1412, (2000)
[6]  
Brown E., Wu E., Zipfel W., Webb W., Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery, Biophys. J., 77, pp. 2837-2849, (1999)
[7]  
Chen C.-M., Liu F., Burrage K., A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227, pp. 886-897, (2007)
[8]  
Chen C.-M., Liu F., Turner I., Anh V., Implicit difference approximation of the Galilei invariant fractional advection diffusion equation, ANZIAM J., 48, pp. C775-C789, (2007)
[9]  
Chen C.-M., Liu F., Burrage K., Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation, Appl. Math. Comput., 198, pp. 754-769, (2008)
[10]  
Compte A., Continuous time random walks on moving fluids, Phys. Rev. E, 55, pp. 6821-6831, (1997)