共 41 条
- [31] Numerical Scheme for Stochastic Differential Equations Driven by Fractional Brownian Motion with 1/4<H<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1/4<H <1/2$$\end{document}. Journal of Theoretical Probability, 2020, 33 (3) : 1211 - 1237
- [32] Controllability and semigroups of invariant control systems on Sln,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {Sl}}\left( n,{\mathbb {H}}\right) $$\end{document} Mathematics of Control, Signals, and Systems, 2022, 34 (2) : 393 - 404
- [33] Existence and Uniqueness of Strong Solutions of Mixed-Type Stochastic Differential Equations Driven by Fractional Brownian Motions with Hurst Exponents \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H>1/4 $$\end{document} Differential Equations, 2024, 60 (6) : 691 - 702
- [34] Measure theory and S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{2}$$\end{document}-pseudo almost periodic and automorphic process: application to stochastic evolution equations Afrika Matematika, 2015, 26 (5-6) : 779 - 812
- [35] New best proximity point (pair) theorems via MNC and application to the existence of optimum solutions for a system of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Hilfer fractional differential equations Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117 (3):
- [36] Controllability Analysis of Neutral Stochastic Differential Equation Using ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-Hilfer Fractional Derivative with Rosenblatt ProcessControllability Analysis of Neutral Stochastic...M. Lavanya et al. Qualitative Theory of Dynamical Systems, 2025, 24 (1)
- [37] Simulation of Weakly Self-Similar Stationary Increment \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Sub}}_{\varphi } {\left( \Omega \right)}$$\end{document}-Processes: A Series Expansion Approach Methodology and Computing in Applied Probability, 2005, 7 (3) : 379 - 400
- [38] Delay Equations with Non-negativity Constraints Driven by a Hölder Continuous Function of Order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta \in \left(\frac13,\frac12\right)$\end{document} Potential Analysis, 2014, 41 (1) : 117 - 141
- [39] From Constructive Field Theory to Fractional Stochastic Calculus. (II) Constructive Proof of Convergence for the Lévy Area of Fractional Brownian Motion with Hurst Index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\alpha}\,{\in}\,(\frac{1}{8},\frac{1}{4})}$$\end{document} Annales Henri Poincaré, 2012, 13 (2) : 209 - 270
- [40] Controllability of multi-term fractional-order impulsive dynamical systems with φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-Caputo fractional derivativeControllability of multi-term fractional-order...Md. S. H. Ansari, M. Malik Fractional Calculus and Applied Analysis, 2025, 28 (2) : 1040 - 1070