α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Whittaker controllability of ϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta $$\end{document}-Hilfer fractional stochastic evolution equations driven by fractional Brownian motion

被引:0
作者
Mohammad Bagher Ghaemi
Fatemeh Mottaghi
Reza Saadati
Tofigh Allahviranloo
机构
[1] Iran University of Science and Technology,School of Mathematics
[2] Istinye University,Faculty of Engineering and Natural Sciences
关键词
-Hilfer fractional derivative; Stochastic evolution equations; Fractional Brownian motion; Controllability; Whittaker function; Economic growth model; Ramsey model; 45E10; 65R20;
D O I
10.1007/s40314-023-02357-z
中图分类号
学科分类号
摘要
In this paper, we study the fractional-order system in the sense of ϑ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta $$\end{document}-Hilfer fractional stochastic evolution equations driven by fractional Brownian motion. Applying the fixed point technique, we prove that there exists a mild solution for the problem and introduce a new type of stability. Finally, we present two examples to demonstrate how the obtained results might be applied.
引用
收藏
相关论文
共 41 条