On an invariant measure for homeomorphisms of a circle with a point of break

被引:0
作者
A. A. Dzhalilov
K. M. Khanin
机构
来源
Functional Analysis and Its Applications | 1998年 / 32卷
关键词
Lebesgue Measure; Invariant Measure; Rotation Number; Cross Ratio; Main Lemma;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:153 / 161
页数:8
相关论文
共 16 条
[1]  
Denjoy A.(1932)Sur les courbes definies par les equations différentielles a la surface du tore J. Math. Pures Appl. 11 333-375
[2]  
Arnold V. I.(1961)Small denominators, I. Mapping the circle onto itself Izv. Akad. Nauk SSSR, Ser. Matem. 25 21-86
[3]  
Moser J.(1966)A rapidly convergent iteration method, Part II Ann. Scuola Norm. Sup. Pisa Cl. Sci. 20 499-535
[4]  
Herman M.(1979)Sur la conjugaison différentiable des difféomorphisims du cercle a des rotations Publ. Math. IHES 49 5-233
[5]  
Herman M.(1978)Résultats récents sur la conjugaison différentiable Proc. Intern. Cong. Math., Helsinki 2 811-820
[6]  
Yoccoz J. C.(1984)Conjugaison différentiable des difféomorphisims du cercle dont la mombre de rotation vérifie une condition diophantienne Ann. Sci. École Norm. Sup. 17 333-359
[7]  
Khanin K. M.(1987)A new proof of M. Herman's theorem Comm. Math. Phys. 112 89-101
[8]  
Sinai Ya. G.(1989)Smoothness of conjugacies of diffeomorphisms of the circle with rotations Usp. Mat. Nauk 44 57-81
[9]  
Sinai Ya. G.(1989)The differentiability of the conjugation of certain diffeomorphisms of the circle Ergodic Theory Dynamical Systems 9 643-680
[10]  
Khanin K. M.(1988)Smooth conjugacy and renormalization for diffeomorphisms of the circle Nonlinearity 1 541-575