Random linear network coding;
Subspace codes;
Grassmannian;
Group action;
General linear group;
Abelian group;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A constant dimension code consists of a set of k-dimensional subspaces of 𝔽qn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {F}_{q}^{n}$\end{document}, where 𝔽q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {F}_{q}$\end{document} is a finite field of q elements. Orbit codes are constant dimension codes which are defined as orbits under the action of a subgroup of the general linear group on the set of all k-dimensional subspaces of 𝔽qn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb {F}_{q}^{n}$\end{document}. If the acting group is Abelian, we call the corresponding orbit code Abelian orbit code. In this paper we present a construction of an Abelian non-cyclic orbit code for which we compute its cardinality and its minimum subspace distance. Our code is a partial spread and consequently its minimum subspace distance is maximal.
机构:
Univ Paris VIII, Dept Math, F-93526 St denis, France
Univ Sorbonne Paris Nord, Lab Anal Geometry & Applicat LAGA, F-93430 Villetaneuse, France
Polytech Inst Paris, Telecom Paris, F-91120 Palaiseau, FranceUniv Paris VIII, Dept Math, F-93526 St denis, France
Mesnager, Sihem
Raja, Rameez
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Technol, Dept Math, Srinagar 190006, Jammu And Kashm, IndiaUniv Paris VIII, Dept Math, F-93526 St denis, France