A construction of Abelian non-cyclic orbit codes

被引:0
|
作者
Joan-Josep Climent
Verónica Requena
Xaro Soler-Escrivà
机构
[1] Universitat d’Alacant,Departament de Matemàtiques
来源
关键词
Random linear network coding; Subspace codes; Grassmannian; Group action; General linear group; Abelian group;
D O I
暂无
中图分类号
学科分类号
摘要
A constant dimension code consists of a set of k-dimensional subspaces of 𝔽qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}^{n}$\end{document}, where 𝔽q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document} is a finite field of q elements. Orbit codes are constant dimension codes which are defined as orbits under the action of a subgroup of the general linear group on the set of all k-dimensional subspaces of 𝔽qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}^{n}$\end{document}. If the acting group is Abelian, we call the corresponding orbit code Abelian orbit code. In this paper we present a construction of an Abelian non-cyclic orbit code for which we compute its cardinality and its minimum subspace distance. Our code is a partial spread and consequently its minimum subspace distance is maximal.
引用
收藏
页码:839 / 852
页数:13
相关论文
共 50 条
  • [31] Cyclic orbit flag codes
    Clementa Alonso-González
    Miguel Ángel Navarro-Pérez
    Designs, Codes and Cryptography, 2021, 89 : 2331 - 2356
  • [32] Cyclic orbit flag codes
    Alonso-Gonzalez, Clementa
    Navarro-Perez, Miguel Angel
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (10) : 2331 - 2356
  • [33] Constructions of Abelian Codes Multiplying Dimension of Cyclic Codes
    Joaquin Bernal, Jose
    Bueno-Carreno, Diana H.
    Jacobo Simon, Juan
    MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (02) : 415 - 421
  • [34] Orbit codes of finite Abelian groups and lattices
    Mesnager, Sihem
    Raja, Rameez
    DISCRETE MATHEMATICS, 2024, 347 (05)
  • [35] THE CONCATENATED STRUCTURE OF CYCLIC AND ABELIAN CODES
    JENSEN, JM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (06) : 788 - 793
  • [36] Constructions of Abelian Codes Multiplying Dimension of Cyclic Codes
    José Joaquín Bernal
    Diana H. Bueno-Carreño
    Juan Jacobo Simón
    Mathematics in Computer Science, 2020, 14 : 415 - 421
  • [37] Crosscap of the non-cyclic graph of groups
    Selvakumar, K.
    Subajini, M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (03) : 235 - 240
  • [38] ELEMENTS THAT GENERATE NON-CYCLIC GROUPS
    ANDRESEN, E
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (01): : 81 - &
  • [40] NON-CYCLIC NATURE OF JAPANESE ACCENTUATION
    SHIBATANI, M
    LANGUAGE, 1972, 48 (03) : 584 - 595