A construction of Abelian non-cyclic orbit codes

被引:0
|
作者
Joan-Josep Climent
Verónica Requena
Xaro Soler-Escrivà
机构
[1] Universitat d’Alacant,Departament de Matemàtiques
来源
关键词
Random linear network coding; Subspace codes; Grassmannian; Group action; General linear group; Abelian group;
D O I
暂无
中图分类号
学科分类号
摘要
A constant dimension code consists of a set of k-dimensional subspaces of 𝔽qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}^{n}$\end{document}, where 𝔽q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document} is a finite field of q elements. Orbit codes are constant dimension codes which are defined as orbits under the action of a subgroup of the general linear group on the set of all k-dimensional subspaces of 𝔽qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}^{n}$\end{document}. If the acting group is Abelian, we call the corresponding orbit code Abelian orbit code. In this paper we present a construction of an Abelian non-cyclic orbit code for which we compute its cardinality and its minimum subspace distance. Our code is a partial spread and consequently its minimum subspace distance is maximal.
引用
收藏
页码:839 / 852
页数:13
相关论文
共 50 条
  • [21] Cyclic and non-cyclic aspects of erosion
    Fenneman, NM
    SCIENCE, 1936, 83 : 87 - 94
  • [22] A Construction of Orbit Codes
    Climent, Joan-Josep
    Requena, Veronica
    Soler-Escriva, Xaro
    CODING THEORY AND APPLICATIONS, ICMCTA 2017, 2017, 10495 : 72 - 83
  • [23] On Finite 2-Groups with the Non-Dedekind Metacyclic Norm of Abelian Non-Cyclic Subgroups
    Lukashova, T. D.
    Lyman, F. M.
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2021, 11 : 45 - 64
  • [24] Construction of minimal non-abelian left group codes
    Olteanu, Gabriela
    Van Gelder, Inneke
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (03) : 359 - 373
  • [25] Construction of minimal non-abelian left group codes
    Gabriela Olteanu
    Inneke Van Gelder
    Designs, Codes and Cryptography, 2015, 75 : 359 - 373
  • [26] Construction of Singer Subgroup Orbit Codes Based on Cyclic Difference Sets
    Ghatak, Anirban
    2014 TWENTIETH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2014,
  • [27] NON-CYCLIC DIVISION ALGEBRAS
    RISMAN, LJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06): : A568 - A568
  • [28] On the co-Dedekindian finite p-groups with non-cyclic abelian second centre
    Jamali, AR
    Mousavi, H
    GLASGOW MATHEMATICAL JOURNAL, 2002, 44 : 1 - 8
  • [29] On the non-cyclic graph of a group
    Vatandoost, E.
    Golkhandypour, Y.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (01)
  • [30] Non-cyclic Weierstrass semigroups
    Kim, SJ
    Komeda, J
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 993 - 1005