A construction of Abelian non-cyclic orbit codes

被引:0
|
作者
Joan-Josep Climent
Verónica Requena
Xaro Soler-Escrivà
机构
[1] Universitat d’Alacant,Departament de Matemàtiques
来源
关键词
Random linear network coding; Subspace codes; Grassmannian; Group action; General linear group; Abelian group;
D O I
暂无
中图分类号
学科分类号
摘要
A constant dimension code consists of a set of k-dimensional subspaces of 𝔽qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}^{n}$\end{document}, where 𝔽q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document} is a finite field of q elements. Orbit codes are constant dimension codes which are defined as orbits under the action of a subgroup of the general linear group on the set of all k-dimensional subspaces of 𝔽qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}^{n}$\end{document}. If the acting group is Abelian, we call the corresponding orbit code Abelian orbit code. In this paper we present a construction of an Abelian non-cyclic orbit code for which we compute its cardinality and its minimum subspace distance. Our code is a partial spread and consequently its minimum subspace distance is maximal.
引用
收藏
页码:839 / 852
页数:13
相关论文
共 50 条
  • [1] A construction of Abelian non-cyclic orbit codes
    Climent, Joan-Josep
    Requena, Veronica
    Soler-Escriva, Xaro
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (05): : 839 - 852
  • [2] Construction of spread codes based on Abelian non-cyclic orbit codes
    Chen, Shangdi
    Liang, Junying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 608 : 54 - 67
  • [3] ABELIAN NON-CYCLIC ORBIT CODES AND MULTISHOT SUBSPACE CODES
    Bastos, Gustavo Terra
    Palazzo Junior, Reginaldo
    Guerreiro, Marines
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (04) : 631 - 650
  • [4] New constructions of abelian non-cyclic orbit codes based on parabolic subgroups and tensor products
    Askary, Soleyman
    Biranvand, Nader
    Shirjian, Farrokh
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 103
  • [5] A CLASS OF NON-CYCLIC BURST ERROR CORRECTING CODES
    SRINIVAS.CV
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1966, 12 (02) : 278 - +
  • [7] CONSTRUCTION OF FINITE LOCAL NEAR-RINGS .1. ON NON-CYCLIC ABELIAN P-GROUPS
    MAXSON, CJ
    QUARTERLY JOURNAL OF MATHEMATICS, 1970, 21 (84): : 449 - &
  • [8] A note on difference matrices over non-cyclic finite abelian groups*
    Pan, Rong
    Chang, Yanxun
    DISCRETE MATHEMATICS, 2016, 339 (02) : 822 - 830
  • [9] FINITE p-GROUPS AND CENTRALIZERS OF NON-CYCLIC ABELIAN SUBGROUPS
    Wang, J.
    Guo, X.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (01): : 171 - 192
  • [10] Recursive construction of non-cyclic pandiagonal Latin squares
    Dabbaghian, Vahid
    Wu, Tiankuang
    DISCRETE MATHEMATICS, 2013, 313 (23) : 2835 - 2840