Lefschetz theorem for holomorphic one-forms on weakly 1-complete manifolds

被引:0
作者
Chen Zhou
机构
[1] Sun Yat-Sen University,
来源
Mathematische Annalen | 2022年 / 382卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a holomorphic one-form ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\xi }$$\end{document} on a weakly 1-complete manifold X with certain properties, we will discuss the connectivity of the pair (X^,F-1(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hat{X},F^{-1}(z))$$\end{document}, where π:X^→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :\hat{X} \rightarrow X$$\end{document} is a covering map and F is a holomorphic function on X^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{X}$$\end{document} such that dF=π∗ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dF=\pi ^*{\xi }$$\end{document}. We will also discuss the criteria about when such a manifold X admits a proper holomorphic mapping onto a Riemann surface.
引用
收藏
页码:761 / 782
页数:21
相关论文
共 18 条
  • [1] Arapura D(1992)On the fundamental group of a compact Kähler manifold Duke Math. J. 68 477-488
  • [2] Bressler P(2010)L’invariant de Bieri–Neumann–Strebel des groupes fondamentaux des variétés kählériennes Math. Ann. 348 119-125
  • [3] Ramachandran M(1990)Cohomology of q-convex spaces in top degrees Math. Z. 204 283-296
  • [4] Delzant T(1992)Harmonic maps into singular spaces and Publ. Math. l’IHÉS 76 165-246
  • [5] Demailly JP(2008)-adic superrigidity for lattices in groups of rank one Geom. Funct. Anal. 17 1621-1365
  • [6] Gromov M(2001)Filtered ends, proper holomorphic mappings of Kähler manifolds to Riemann surfaces, and Kähler groups Geom. Funct. Anal. 11 382-270
  • [7] Schoen R(1997)Hyperbolic Kähler manifolds and proper holomorphic mappings to Riemann surfaces Ann. Inst. Fourier 47 1345-113
  • [8] Napier T(2016)The Bochner–Hartogs dichotomy for weakly 1-complete Kähler manifolds Ann. Inst. Fourier 66 239-undefined
  • [9] Ramachandran M(1995)The Bochner–Hartogs dichotomy for bounded geometry hyperbolic Kähler manifolds Geom. Funct. Anal. 5 809-undefined
  • [10] Napier T(1993)Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems Compos. Math. 87 99-undefined