Integer-valued polynomials over matrices and divided differences

被引:0
|
作者
Giulio Peruginelli
机构
[1] Technische Universität,Institut für Analysis und Computational Number Theory
来源
Monatshefte für Mathematik | 2014年 / 173卷
关键词
Integer-valued polynomial; Divided differences; Matrix; Integral element; Polynomial closure; Pullback; 13B25; 13F20; 11C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} be an integrally closed domain with quotient field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} and n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} a positive integer. We give a characterization of the polynomials in K[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[X]$$\end{document} which are integer-valued over the set of matrices Mn(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n(D)$$\end{document} in terms of their divided differences. A necessary and sufficient condition on f∈K[X]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in K[X]$$\end{document} to be integer-valued over Mn(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_n(D)$$\end{document} is that, for each k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} less than n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}th divided difference of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is integral-valued on every subset of the roots of any monic polynomial over D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} of degree n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}. If in addition D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} has zero Jacobson radical then it is sufficient to check the above conditions on subsets of the roots of monic irreducible polynomials of degree n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, that is, conjugate integral elements of degree n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} over D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}.
引用
收藏
页码:559 / 571
页数:12
相关论文
共 45 条
  • [31] Restricted elasticity and rings of integer-valued polynomials determined by finite subsets
    Chapman, Scott T.
    Smith, William W.
    MONATSHEFTE FUR MATHEMATIK, 2006, 148 (03): : 195 - 203
  • [32] Globalized pseudo-valuation domains of integer-valued polynomials on a subset
    Park, Mi Hee
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (06) : 2507 - 2516
  • [33] Prufer domains of integer-valued polynomials and the two-generator property
    Park, Mi Hee
    JOURNAL OF ALGEBRA, 2021, 582 : 232 - 243
  • [34] Integer-valued Euler-Jackson's finite differences
    Adam, David
    Fares, Youssef
    MONATSHEFTE FUR MATHEMATIK, 2010, 161 (01): : 15 - 32
  • [35] Decomposition of integer-valued polynomial algebras
    Peruginelli, Giulio
    Werner, Nicholas J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (09) : 2562 - 2579
  • [36] Universal properties of integer-valued polynomial rings
    Elliott, Jesse
    JOURNAL OF ALGEBRA, 2007, 318 (01) : 68 - 92
  • [37] Polynomials and divided differences
    Riedel, T
    Sablik, M
    Sklar, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 66 (3-4): : 313 - 326
  • [38] INTEGER-VALUED POLYNOMIAL RINGS, t-CLOSURE, AND ASSOCIATED PRIMES
    Elliott, Jesse
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4128 - 4147
  • [39] Non-triviality conditions for integer-valued polynomial rings on algebras
    Peruginelli, Giulio
    Werner, Nicholas J.
    MONATSHEFTE FUR MATHEMATIK, 2017, 183 (01): : 177 - 189
  • [40] Non-triviality conditions for integer-valued polynomial rings on algebras
    Giulio Peruginelli
    Nicholas J. Werner
    Monatshefte für Mathematik, 2017, 183 : 177 - 189