Learning a symbolic representation for multivariate time series classification

被引:0
|
作者
Mustafa Gokce Baydogan
George Runger
机构
[1] Boğaziçi University,Department of Industrial Engineering
[2] Arizona State University,School of Computing, Informatics & Decision Systems Engineering
来源
Data Mining and Knowledge Discovery | 2015年 / 29卷
关键词
Supervised learning; Codebook; Decision trees;
D O I
暂无
中图分类号
学科分类号
摘要
Multivariate time series (MTS) classification has gained importance with the increase in the number of temporal datasets in different domains (such as medicine, finance, multimedia, etc.). Similarity-based approaches, such as nearest-neighbor classifiers, are often used for univariate time series, but MTS are characterized not only by individual attributes, but also by their relationships. Here we provide a classifier based on a new symbolic representation for MTS (denoted as SMTS) with several important elements. SMTS considers all attributes of MTS simultaneously, rather than separately, to extract information contained in the relationships. Symbols are learned from a supervised algorithm that does not require pre-defined intervals, nor features. An elementary representation is used that consists of the time index, and the values (and first differences for numerical attributes) of the individual time series as columns. That is, there is essentially no feature extraction (aside from first differences) and the local series values are fused to time position through the time index. The initial representation of raw data is quite simple conceptually and operationally. Still, a tree-based ensemble can detect interactions in the space of the time index and time values and this is exploited to generate a high-dimensional codebook from the terminal nodes of the trees. Because the time index is included as an attribute, each MTS is learned to be segmented by time, or by the value of one of its attributes. The codebook is processed with a second ensemble where now implicit feature selection is exploited to handle the high-dimensional input. The constituent properties produce a distinctly different algorithm. Moreover, MTS with nominal and missing values are handled efficiently with tree learners. Experiments demonstrate the effectiveness of the proposed approach in terms of accuracy and computation times in a large collection multivariate (and univariate) datasets.
引用
收藏
页码:400 / 422
页数:22
相关论文
共 50 条
  • [1] Learning a symbolic representation for multivariate time series classification
    Baydogan, Mustafa Gokce
    Runger, George
    DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 29 (02) : 400 - 422
  • [2] Combining Machine Learning and Symbolic Representation of Time Series for Classification of Behavioural Patterns
    Carballo Perez, Paula
    Ortega, Felipe
    Navarro Garcia, Jorge
    Martin de Diego, Isaac
    ICSLT 2019: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON E-SOCIETY, E-LEARNING AND E-TECHNOLOGIES, 2019, : 93 - 97
  • [3] Discrete Representation Learning for Multivariate Time Series
    Ajirak, Marzieh
    Elbau, Immanuel
    Solomonov, Nili
    Grosenick, Logan
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1132 - 1136
  • [4] TrSAX-An improved time series symbolic representation for classification
    Ruan, Hui
    Hu, Xiaoguang
    Xiao, Jin
    Zhang, Guofeng
    ISA TRANSACTIONS, 2020, 100 : 387 - 395
  • [5] Difference-Guided Representation Learning Network for Multivariate Time-Series Classification
    Ma, Qianli
    Chen, Zipeng
    Tian, Shuai
    Ng, Wing W. Y.
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (06) : 4717 - 4727
  • [6] Entropy-based symbolic representation for time series classification
    Chen, Xiao-yun
    Ye, Dong-yi
    Hu, Xiao-Lin
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2007, : 754 - 760
  • [7] Unsupervised Scalable Representation Learning for Multivariate Time Series
    Franceschi, Jean-Yves
    Dieuleveut, Aymeric
    Jaggi, Martin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [8] A symbolic representation of time series
    Wang, Q
    Megalooikonomou, V
    Li, G
    ISSPA 2005: THE 8TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2005, : 655 - 658
  • [9] Symbolic representation for time series
    Combettes, Sylvain W.
    Truong, Charles
    Oudre, Laurent
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1962 - 1966
  • [10] Temporal representation learning for time series classification
    Hu, Yupeng
    Zhan, Peng
    Xu, Yang
    Zhao, Jia
    Li, Yujun
    Li, Xueqing
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (08): : 3169 - 3182