An Operator Related to the Sub-Laplacian on the Quaternionic Heisenberg Group

被引:0
|
作者
Haimeng Wang
Bei Wang
机构
[1] Jiangsu second normal University,Department of Mathematics and Information Technology
来源
Advances in Applied Clifford Algebras | 2022年 / 32卷
关键词
Fundamental solution; The group Fourier transform; The non-isotropic quaternionic Heisenberg group; Sub-Laplacian; 22E30; 35A08;
D O I
暂无
中图分类号
学科分类号
摘要
We study an operator related to the sub-Laplacian on the non-isotropic quaternionic Heisenberg group and construct the fundamental solution for this operator. For the isotropic case, we derive the closed form of this solution. The techniques we used can be applied to the standard Heisenberg group. We also give the connection between this operator and the Heisenberg sub-Laplacian.
引用
收藏
相关论文
共 50 条
  • [21] Powers of Sub-Laplacian on Step Two Nilpotent Lie Groups
    Ajay Kumar
    Mukund Madhav Mishra
    Journal of Geometric Analysis, 2013, 23 : 1559 - 1570
  • [22] The first positive eigenvalue of the sub-Laplacian on CR spheres
    Aribi, Amine
    El Soufi, Ahmad
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 51 (01) : 1 - 9
  • [23] Intrinsic sub-Laplacian for hypersurface in a contact sub-Riemannian manifold
    Barilari, Davide
    Habermann, Karen
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01):
  • [24] ON UNIQUE CONTINUATION PROPERTIES FOR THE SUB-LAPLACIAN ON CARNOT GROUPS
    钮鹏程
    王家林
    Acta Mathematica Scientia, 2010, 30 (05) : 1776 - 1784
  • [25] The first positive eigenvalue of the sub-Laplacian on CR spheres
    Amine Aribi
    Ahmad El Soufi
    Annals of Global Analysis and Geometry, 2017, 51 : 1 - 9
  • [26] ON UNIQUE CONTINUATION PROPERTIES FOR THE SUB-LAPLACIAN ON CARNOT GROUPS
    Niu Pengcheng
    Wang Jialin
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) : 1776 - 1784
  • [27] Intrinsic sub-Laplacian for hypersurface in a contact sub-Riemannian manifold
    Davide Barilari
    Karen Habermann
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [28] Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds
    He-Jun Sun
    Mathematical Notes, 2021, 109 : 735 - 747
  • [29] Spectral zeta function of the sub-Laplacian on two step nilmanifolds
    Bauer, W.
    Furutani, K.
    Iwasaki, C.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (03): : 242 - 261
  • [30] Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds
    Sun, He-Jun
    MATHEMATICAL NOTES, 2021, 109 (5-6) : 735 - 747