An Operator Related to the Sub-Laplacian on the Quaternionic Heisenberg Group

被引:0
作者
Haimeng Wang
Bei Wang
机构
[1] Jiangsu second normal University,Department of Mathematics and Information Technology
来源
Advances in Applied Clifford Algebras | 2022年 / 32卷
关键词
Fundamental solution; The group Fourier transform; The non-isotropic quaternionic Heisenberg group; Sub-Laplacian; 22E30; 35A08;
D O I
暂无
中图分类号
学科分类号
摘要
We study an operator related to the sub-Laplacian on the non-isotropic quaternionic Heisenberg group and construct the fundamental solution for this operator. For the isotropic case, we derive the closed form of this solution. The techniques we used can be applied to the standard Heisenberg group. We also give the connection between this operator and the Heisenberg sub-Laplacian.
引用
收藏
相关论文
共 49 条
[1]  
Bauer W(2020)Fundamental solutions of a class of ultra-hyperbolic operators on pseudo h-type groups Adv. Math. 369 107186-163
[2]  
Froehly A(1997)Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians, i, ii, iii Bull. Sci. Math. 121 1-2569
[3]  
Markina I(2010)On a geometric formula for the fundamental solution of subelliptic Laplacians Math. Nachr. 181 81-394
[4]  
Beals R(2009)Laguerre calculus and Paneitz operator on the Heisenberg group Sci. China Ser. A 52 2549-540
[5]  
Gaveau B(2007)Some differential operators related to the non-isotropic Heisenberg sub-Laplacian Adv. Appl. Math. 39 345-1654
[6]  
Greiner P(2008)Quaternion h-type group and differential operator Sci. China Ser. A 51 523-1882
[7]  
Beals R(2013)On the Cauchy–Szegö kernel for quaternion Siegel upper half-space Complex Anal. Oper. Theory 7 1623-678
[8]  
Gaveau B(2019)The Laguerre calculus on the nilpotent lie groups of step two J. Math. Anal. Appl. 475 1855-39
[9]  
Greiner P(2000)Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group J. Geom. Anal. 10 653-818
[10]  
Chang DC(2001)Some differential operators related to the non-isotropic Heisenberg sub-Laplacian Math. Nachr. 221 19-522