Persistence of Degenerate Lower Dimensional Invariant Tori with Prescribed Frequencies in Reversible Systems

被引:0
作者
Xiaomei Yang
Junxiang Xu
Shunjun Jiang
机构
[1] Southeast University,School of Mathematics
[2] Nanjing Tech University,College of Sciences
来源
Journal of Dynamics and Differential Equations | 2023年 / 35卷
关键词
Reversible system; KAM iteration; Invariant tori; Degenerate equilibrium;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers small perturbations of an integrable reversible system which has a degenerated lower dimensional invariant torus in some sense. In the presence of some higher-order terms, by some KAM technique and the stability of critical points of real analytic functions developed for hamiltonian systems, we prove the persistence of the degenerate lower dimensional invariant torus with prescribed frequencies without extra conditions on the perturbations besides the smallness. This result is an extension of the partial result of hamiltonian systems in Xu and You (Regul Chaotic Dyn 25(6):616–650, 2020) to reversible systems.
引用
收藏
页码:329 / 354
页数:25
相关论文
共 46 条
  • [11] Li Y(2000)Persistence of hyperbolic invariant tori for Hamiltonian systems J. Differ. Equ. 164 355-7480
  • [12] You J-G(2019)Completely degenerate lower-dimensional invariant tori for Hamiltonian system J. Differ. Equ. 266 7459-194
  • [13] Eliasson LH(2001)On lower dimensional invariant tori in reversible systems J. Differential Equations 176 158-1600
  • [14] Eliasson LH(2004)Persistence of lower dimensional tori of general types in Hamiltonian systems Trans. A. M. S. 357 1565-387
  • [15] Gentile G(2005)Persistence of hyperbolic tori in Hamiltonian systems J. Differ. Equ. 208 344-2130
  • [16] Graff SM(2015)Lagrangian tori near resonances of near-integrable Hamiltonian systems Nonlinearity 28 2105-176
  • [17] Han Y-C(1967)Convergent series expansions for quasi-periodic motions Math. Ann. 169 136-608
  • [18] Li Y(1989)On elliptic lower dimensional tori in Hamiltonian systems Math. Z. 202 559-209
  • [19] Yi Y-F(1997)KAM theory near multiplicity one resonant surfaces in perturbations of A-priori stable Hamiltonian systems J. Nonlinear Sci 7 177-1140
  • [20] Huang Q-D(2006)Partial preservation of frequencies in KAM theory Nonlinearity 19 1099-2333