Persistence of Degenerate Lower Dimensional Invariant Tori with Prescribed Frequencies in Reversible Systems

被引:0
作者
Xiaomei Yang
Junxiang Xu
Shunjun Jiang
机构
[1] Southeast University,School of Mathematics
[2] Nanjing Tech University,College of Sciences
来源
Journal of Dynamics and Differential Equations | 2023年 / 35卷
关键词
Reversible system; KAM iteration; Invariant tori; Degenerate equilibrium;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers small perturbations of an integrable reversible system which has a degenerated lower dimensional invariant torus in some sense. In the presence of some higher-order terms, by some KAM technique and the stability of critical points of real analytic functions developed for hamiltonian systems, we prove the persistence of the degenerate lower dimensional invariant torus with prescribed frequencies without extra conditions on the perturbations besides the smallness. This result is an extension of the partial result of hamiltonian systems in Xu and You (Regul Chaotic Dyn 25(6):616–650, 2020) to reversible systems.
引用
收藏
页码:329 / 354
页数:25
相关论文
共 46 条
  • [1] Broer HW(1995)Unfoldings of quasi-periodic tori in reversible systems J. Dyn. Differ. Equ. 7 191-212
  • [2] Huitema GB(1994)Drift and diffusion in phase space Ann. Inst. H. Poincaré Phys. Théor. 60 144-529
  • [3] Chierchia L(2012)Oscillator synchronisation under arbitrary quasi-periodic forcing Commun. Math. Phys. 316 489-1140
  • [4] Gallavotti G(2015)Resonant motions in the presence of degeneracies for quasi-periodically perturbed systems Ergod. Theorem Dyn. Syst. 35 1079-68
  • [5] Corsi L(2000)KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems J. Nonlinear Sci. 10 49-76
  • [6] Gentile G(1994)Biasymptotic solutions of perturbed integrable Hamiltonian systems Bol. Soc. Brasil Mat. (N.S.) 25 57-147
  • [7] Corsi L(1988)Perturbations of stable invariant tori for Hamiltonian systems Ann. Sc. Norm. Sup. Pisa Cl. Sci. 15 115-457
  • [8] Gentile G(2007)Degenerate lower-dimensional tori under the Bryuno condition Ergod. Theorem Dyn. Syst. 27 427-69
  • [9] Cong F-Z(1974)On the conservation of hyperbolic invariant tori for Hamiltonian systems J. Differ. Equ. 15 1-691
  • [10] Küpper T(2006)Degenerate lower dimensional tori in Hamiltonian systems J. Differ. Equ. 227 670-379