Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow

被引:0
作者
M. Grasselli
H. Wu
机构
[1] Politecnico di Milano,Dipartimento di Matematica F. Brioschi
[2] Fudan University,Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2011年 / 62卷
关键词
35B41; 35Q35; 76A15; 76D05; Liquid crystal flow; Kinematic transport; Global attractor; Finite fractal dimension;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a 2D system that models the nematic liquid crystal flow through the Navier–Stokes equations suitably coupled with a transport-reaction-diffusion equation for the averaged molecular orientations. This system has been proposed as a reasonable approximation of the well-known Ericksen–Leslie system. Taking advantage of previous well-posedness results and proving suitable dissipative estimates, here we show that the system endowed with periodic boundary conditions is a dissipative dynamical system with a smooth global attractor of finite fractal dimension.
引用
收藏
页码:979 / 992
页数:13
相关论文
共 42 条
  • [21] The global attractor of the nonautonomous 2D navier-stokes system with singularly oscillating external force
    M. I. Vishik
    V. V. Chepyzhov
    Doklady Mathematics, 2007, 75 : 236 - 239
  • [22] Global attractor of 2D autonomous g-Navier-Stokes equations
    姜金平
    王小霞
    AppliedMathematicsandMechanics(EnglishEdition), 2013, 34 (03) : 385 - 394
  • [23] On whether zero is in the global attractor of the 2D Navier-Stokes equations
    Foias, Ciprian
    Jolly, Michael S.
    Yang, Yong
    Zhang, Bingsheng
    NONLINEARITY, 2014, 27 (11) : 2755 - 2770
  • [24] Global attractor of 2D autonomous g-Navier-Stokes equations
    Jin-ping Jiang
    Xiao-xia Wang
    Applied Mathematics and Mechanics, 2013, 34 : 385 - 394
  • [25] THE GLOBAL ATTRACTOR OF THE 2D BOUSSINESQ EQUATIONS WITH FRACTIONAL LAPLACIAN IN SUBCRITICAL CASE
    Huo, Wenru
    Huang, Aimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (08): : 2531 - 2550
  • [26] Global attractor of 2D autonomous g-Navier-Stokes equations
    Jiang, Jin-ping
    Wang, Xiao-xia
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (03) : 385 - 394
  • [27] GLOBAL EXISTENCE AND FINITE DIMENSIONAL GLOBAL ATTRACTOR FOR A 3D DOUBLE VISCOUS MHD-α MODEL
    Catania, Davide
    Secchi, Paolo
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (04) : 1021 - 1040
  • [28] GLOBAL ATTRACTOR FOR A MATHEMATICAL MODEL OF 2D MAGNETO-VISCOELASTIC FLOWS
    Liu, Aibo
    Liu, Changchun
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (04): : 155 - 166
  • [29] APPROXIMATION OF THE TRAJECTORY ATTRACTOR OF THE 3D SMECTIC-A LIQUID CRYSTAL FLOW EQUATIONS
    Wang, Xiuqing
    Qin, Yuming
    Miranville, Alain
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3805 - 3827
  • [30] Fourier Spectral Approximation to Global Attractor for 2D Convective Cahn–Hilliard Equation
    Xiaopeng Zhao
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1119 - 1138