Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow

被引:0
作者
M. Grasselli
H. Wu
机构
[1] Politecnico di Milano,Dipartimento di Matematica F. Brioschi
[2] Fudan University,Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2011年 / 62卷
关键词
35B41; 35Q35; 76A15; 76D05; Liquid crystal flow; Kinematic transport; Global attractor; Finite fractal dimension;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a 2D system that models the nematic liquid crystal flow through the Navier–Stokes equations suitably coupled with a transport-reaction-diffusion equation for the averaged molecular orientations. This system has been proposed as a reasonable approximation of the well-known Ericksen–Leslie system. Taking advantage of previous well-posedness results and proving suitable dissipative estimates, here we show that the system endowed with periodic boundary conditions is a dissipative dynamical system with a smooth global attractor of finite fractal dimension.
引用
收藏
页码:979 / 992
页数:13
相关论文
共 39 条
[1]  
Climent-Ezquerra B.(2006)Reproductivity for a nematic liquid crystal model Z. Angew. Math. Phys. 57 984-998
[2]  
Guillen-González F.(2009)Regularity and time-periodicity for a nematic liquid crystal model Nonlinear Anal. 71 530-549
[3]  
Rojas-Medar M.(2001)Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals C. R. Acad. Sci. Paris Ser. I Math. 333 919-924
[4]  
Climent-Ezquerra B.(1961)Conservation laws for liquid crystals Trans. Soc. Rheol. 5 22-34
[5]  
Guillen-González F.(1991)Liquid crystals with variable degree of orientation Arch. Ration. Mech. Anal. 113 97-120
[6]  
Moreno-Iraberte M.J.(2009)Regularity criteria for a simplified Ericksen–Leslie system modeling the flow of liquid crystals Discrete Contin. Dyn. Syst. 25 859-867
[7]  
Coutand D.(2009)Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model Math. Nachr. 282 846-867
[8]  
Shkoller S.(2010)Global solution to the three-dimensional incompressible flow of liquid crystals Commun. Math. Phys. 296 861-880
[9]  
Ericksen J.L.(1988)Commutator estimates and the Euler and Navier–Stokes equations Commun. Pure Appl. Math. 41 891-907
[10]  
Ericksen J.L.(1995)Nonparabolic dissipative system modeling the flow of liquid crystals Commun. Pure Appl. Math. 48 501-537