Convergence of Discrete-Velocity Schemes for the Boltzmann Equation

被引:0
作者
Stéphane Mischler
机构
[1] Départment de Mathématiques,
[2] Université de Versailles-Saint-Quentin,undefined
[3] Bâtiment Fermat,undefined
[4] 45,undefined
[5] avenue des États-Unis,undefined
[6] 78055 Versailles Cedex,undefined
来源
Archive for Rational Mechanics and Analysis | 1997年 / 140卷
关键词
Continuous Equation; Boltzmann Equation; Velocity Average; Discretized Equation; Collision Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the convergence of two discrete-velocity deterministic schemes for the Boltzmann equation, namely, Buet's scheme and a new finite-volume scheme that we introduce here. We write the discretized equation in the form of a Boltzmann continuous equation in order to be in the framework of the DiPerna-Lions theory of renormalized solutions. In order to prove convergence we have to overcome two difficulties: the convergence of the discretized collision kernel is very weak and the lemma on the compactness of velocity averages can be recovered only asymptotically when the parameter of discretization tends to zero.
引用
收藏
页码:53 / 77
页数:24
相关论文
共 50 条
  • [21] Improvement of a Discrete Velocity Boltzmann Equation Solver With Arbitrary Post-Collision Velocities
    Morris, A. B.
    Varghese, P. L.
    Goldstein, D. B.
    RAREFIED GAS DYNAMICS, 2009, 1084 : 458 - 463
  • [22] A low noise discrete velocity method for the Boltzmann equation with quantized rotational and vibrational energy
    Clarke, Peter
    Varghese, Philip
    Goldstein, David
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 352 : 326 - 340
  • [23] Discrete models of the Boltzmann equation for mixtures
    Vedenyapin, VV
    Amosov, SA
    DIFFERENTIAL EQUATIONS, 2000, 36 (07) : 1027 - 1032
  • [24] A discrete Boltzmann equation based on hexagons
    Andallah, LS
    Babovsky, H
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (11) : 1537 - 1563
  • [25] Discrete models of the boltzmann equation for mixtures
    V. V. Vedenyapin
    S. A. Amosov
    Differential Equations, 2000, 36 : 1027 - 1032
  • [26] Pointwise Convergence to Knudsen Layers of the Boltzmann Equation
    Shijin Deng
    Weike Wang
    Shih-Hsien Yu
    Communications in Mathematical Physics, 2008, 281
  • [27] Metastable fluid flow described via a discrete-velocity coagulation-fragmentation model
    Slemrod, M
    JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (5-6) : 1067 - 1108
  • [28] A Novel Discrete Velocity Method for Solving the Boltzmann Equation Including Internal Energy and Non-Uniform Grids in Velocity Space
    Clarke, P.
    Varghese, P.
    Goldstein, D.
    Morris, A.
    Bauman, P.
    Hegermiller, D.
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 373 - 380
  • [29] On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials
    Eric A. Carlen
    Maria C. Carvalho
    Xuguang Lu
    Journal of Statistical Physics, 2009, 135 : 681 - 736
  • [30] Convergence of A Distributional Monte Carlo Method for the Boltzmann Equation
    Schrock, Christopher R.
    Wood, Aihua W.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (01) : 102 - 121