Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach

被引:0
|
作者
V. B. Matveev
A. O. Smirnov
机构
[1] St. Petersburg State University for Aerospace Instrumentation (SUAI),Institut de Mathématiques de Bourgogne
[2] Université de Bourgogne-Franche Comté,undefined
来源
Theoretical and Mathematical Physics | 2016年 / 186卷
关键词
rogue wave; freak wave; nonlinear Schrödinger equation; Hirota equation; AKNS hierarchy;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a unified structure of solutions for all equations of the Ablowitz–Kaup–Newell–Segur hierarchy and their combinations. We give examples of solutions that satisfy different equations for different parameter values. In particular, we consider a rank-2 quasirational solution that can be used to investigate many integrable models in nonlinear optics. An advantage of our approach is the possibility to investigate changes in the behavior of a solution resulting from changing the model.
引用
收藏
页码:156 / 182
页数:26
相关论文
共 50 条
  • [1] SOLUTIONS OF THE ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY EQUATIONS OF THE "ROGUE WAVE" TYPE: A UNIFIED APPROACH
    Matveev, V. B.
    Smirnov, A. O.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 186 (02) : 156 - 182
  • [2] SYMMETRIES OF THE ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY
    KISO, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (01) : 284 - 293
  • [3] FINITE-GAP SOLUTIONS OF NONLOCAL EQUATIONS I N ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY
    Smirnov, A. O.
    Matveev, V. B.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 81 - 98
  • [4] NEW EXACT SOLUTIONS FOR ABLOWITZ-KAUP-NEWELL-SEGUR WATER WAVE EQUATION
    Dusunceli, Faruk
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 10 (02): : 171 - 177
  • [5] Darboux transformation for a generalized Ablowitz-Kaup-Newell-Segur hierarchy equation
    Guan, Xue
    Zhou, Qin
    Biswas, Anjan
    Alzahrani, Abdullah Kamis
    Liu, Wenjun
    PHYSICS LETTERS A, 2020, 384 (18)
  • [6] ANALYTICAL TREATMENT ON A NEW GENERALIZED ABLOWITZ-KAUP-NEWELL-SEGUR HIERARCHY OF THERMAL AND FLUID EQUATIONS
    Zhang, Sheng
    Gao, Xudong
    THERMAL SCIENCE, 2017, 21 (04): : 1607 - 1612
  • [7] Exact solutions and residual symmetries of the Ablowitz–Kaup–Newell–Segur system
    刘萍
    曾葆青
    杨建荣
    任博
    Chinese Physics B, 2015, 24 (01) : 129 - 135
  • [8] Local and Nonlocal Reductions of Two Nonisospectral Ablowitz-Kaup-Newell-Segur Equations and Solutions
    Xu, Hai Jing
    Zhao, Song Lin
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 23
  • [9] THE SYLVESTER EQUATION AND INTEGRABLE EQUATIONS: THE ABLOWITZ-KAUP-NEWELL-SEGUR SYSTEM
    Zhao, Song-Lin
    REPORTS ON MATHEMATICAL PHYSICS, 2018, 82 (02) : 241 - 263
  • [10] Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling
    Shen, Shoufeng
    Li, Chunxia
    Jin, Yongyang
    Ma, Wen-Xiu
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)