On Dissipative Phenomena of the Interaction of Hamiltonian Systems

被引:0
作者
O. Yu. Dinariev
机构
[1] Shmidt United Institute of Earth Physics,
来源
Siberian Mathematical Journal | 2003年 / 44卷
关键词
Hamiltonian; relaxation kernel; dissipative phenomena; integro-differential equation;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamics is under study of a composite Hamiltonian system that is the union of a finite-dimensional nonlinear system and an infinite-dimensional linear system with quadratic interaction Hamiltonian. The dynamics of the finite-dimensional subsystem is determined by a nonlinear integro-differential equation with a relaxation kernel. We prove existence and uniqueness theorems and find a priori estimates for a solution. Under some assumptions on the form of interaction, the solution to the finite-dimensional subsystem converges to one of the critical points of the effective Hamiltonian.
引用
收藏
页码:61 / 72
页数:11
相关论文
共 3 条
  • [1] Komech A. I.(2000)Attractors of nonlinear Hamilton one-dimensional wave equations Uspekhi Mat. Nauk 55 45-98
  • [2] Dinariev O. Y.(1999)The relation between the mechanics of dissipative finite-dimensional systems with heredity and the mechanics of infinite-dimensional Hamiltonian systems Prikl. Mat. i Mekh. 63 245-257
  • [3] Dinariev O. Y.(2000)On the dynamics of a nonlinear multidimensional oscillator with memory Sibirsk. Mat. Zh. 41 591-601