White light emission from Dy3+-doped LiLuF4 single crystal grown by Bridgman method

被引:7
作者
Dong Y.-M. [1 ]
Xia H.-P. [1 ]
Fu L. [1 ]
Li S.-S. [1 ]
Gu X.-M. [1 ]
Zhang J.-L. [1 ]
Wang D.-J. [1 ]
Zhang Y.-P. [1 ]
Jiang H.-C. [2 ]
Chen B.-J. [3 ]
机构
[1] Key Laboratory of Photo-electronic Materials, Ningbo University, Ningbo
[2] Ningbo Institute of Materials Technology and Engineering, the Chinese Academy of Sciences, Ningbo
[3] Department of Physics, Dalian Maritime University, Dalian
来源
Xia, Hai-ping | 1600年 / Springer Verlag卷 / 10期
基金
中国国家自然科学基金;
关键词
Chromaticity coordinates - Doping concentration - Excitation wavelength - Ion concentrations - Photoluminescence intensities - Strength parameters - Ultra-violet light - White light emission;
D O I
10.1007/s11801-014-4052-4
中图分类号
学科分类号
摘要
Lithium lutetium fluoride (LiLuF4) single crystals doped with different Dy3+ ion concentrations were grown by Bridgman method. The Judd-Ofelt (J-O) strength parameters (Ω2, Ω4, Ω6) of Dy3+ in LiLuF4 crystal are calculated according to the measured absorption spectra and the J-O theory, by which the asymmetry of the Dy3+:LiLuF4 single crystal and the possibility of attaining stimulated emission from 4F9/2 level are analyzed. The capability of the Dy3+:LiLuF4 crystal in generating white light by simultaneous blue and yellow emissions under excitation with ultraviolet light is produced. The effects of excitation wavelength and doping concentration on chromaticity coordinates and photoluminescence intensity are also investigated. Favorable CIE coordinates, x=0.319 3 and y=0.349 3, can be obtained for Dy3+ ion in 2.701% molar doping concentration under excitation of 350 nm. © 2014, Tianjin University of Technology and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:262 / 265
页数:3
相关论文
共 14 条
[1]  
Zhang R., Wang X., J. Alloys Compd, 509, (2011)
[2]  
Zhang J.C., Parent C., le Flem G., Hagenmuller P., J. Solid State Chem, 93, (1991)
[3]  
Sun X.Y., Huang S.M., Gong X.S., Gao Q.C., Ye Z.P., Cao C.Y., J. Non-Cryst. Solids, 356, (2010)
[4]  
Lin Y.H., Tang Z.L., Zhang Z.T., Zhang J.Y., Chen Q.M., Mater. Sci. Eng. B, 86, (2001)
[5]  
Liu S.M., Zhao G.L., Lin X.H., Ying H., Liu J.B., Wang J.X., Han G.R., J. Solid State Chem, 181, (2008)
[6]  
Tang L., Xia H.P., Wang P.Y., Peng J.T., Jiang H.C., Chin. Opt. Lett, 11, (2013)
[7]  
Johnson L.F., Guggenheim H.J., Appl. Phys. Lett, 23, (1973)
[8]  
Xia H.P., Wang J.H., Zeng X.L., Zhang J.L., Zhang Y.P., Xu J., Nie Q.H., J. Funct. Mater, 36, (2005)
[9]  
Jayasankar C.K., Rukmini E., Physica B, 240, (1997)
[10]  
Xiong J., Peng H.Y., Hu P.C., Hang Y., Zhang L.H., J. Phys. D: Appl. Phys, 43, (2010)