Nonparametric Spatial Prediction

被引:1
作者
Gérard Biau
Benoît Cadre
机构
[1] Université Pierre et Marie Curie – Paris VI,Laboratoire de Statistique Théorique et Appliquée
关键词
kernel regression estimation; random fields; spatial prediction; mixing;
D O I
10.1023/B:SISP.0000049116.23705.88
中图分类号
学科分类号
摘要
Let (ℕ*)N be the integer lattice points in the N-dimensional Euclidean space. We define a nonparametric spatial predictor for the values of a random field indexed by (ℕ*)N using a kernel method. We first examine the general problem of the regression estimation for random fields. Then we show the uniform consistency on compact sets of our spatial predictor as well as its asymptotic normality.
引用
收藏
页码:327 / 349
页数:22
相关论文
共 21 条
  • [1] Biau G.(2002)Optimal asymptotic quadratic errors of density estimators on random fields Stat. Probab. Lett. 60 297-307
  • [2] Carbon M.(1996)Kernel density estimation for random fields: the Nonparametric Stat. 6 157-170
  • [3] Hallin M.(1997) theory Stat. Prob. Lett. 36 115-125
  • [4] Tran L. T.(2001)Kernel density estimation for random fields Bernoulli 7 657-668
  • [5] Carbon M.(1999)Density estimation for spatial linear processes J. Am. Stat. Assoc. 94 86-110
  • [6] Tran L. T.(2001)Prediction of spatial cumulative distribution functions using subsampling (with discussion) Stat. Sci. 16 134-153
  • [7] Wu B.(1968)Nonparametric regression with correlated errors Ann. Math. Stat. 39 1158-1175
  • [8] Hallin M.(1990)Contributions to central limit theory for dependent variables J. Multivariate Anal. 34 37-53
  • [9] Lu Z.(1993)Kernel density estimation on random fields J.Multivariate Anal. 44 23-46
  • [10] Tran L. T.(undefined)Nearest neighbor estimators for random fields undefined undefined undefined-undefined