共 2 条
Integral Representations for Continuous Linear Functionals in Operator-Initiated Topologies
被引:0
作者:
Walter Roth
机构:
[1] Universiti Brunei Darussalam,Department of Mathematics
来源:
Positivity
|
2002年
/
6卷
关键词:
locally convex cones;
positive linear functionals;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
On a given cone (resp. vector space) \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{Q}$$
\end{document} we consider an initial topology and order induced by a family of linear operators into a second cone \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{P}$$
\end{document} which carries a locally convex topology. We prove that monotone linear functionals on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{Q}$$
\end{document} which are continuous with respect to this initial topology may be represented as certain integrals of continuous linear functionals on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{P}$$
\end{document}. Based on the Riesz representation theorem from measure theory, we derive an integral version of the Jordan decomposition for linear functionals on ordered vector spaces.
引用
收藏
页码:115 / 127
页数:12
相关论文