On the Convergence of Backward Differentiation Formulas for Stiff Initial Value Problems

被引:0
作者
Gabriela Kirlinger
机构
[1] Technische Universität,Institut für Angewandte und Numerische Mathematik
来源
BIT Numerical Mathematics | 2001年 / 41卷
关键词
Non-autonomous problems; stiff initial value problems; backward differentiation formulas; convergence;
D O I
暂无
中图分类号
学科分类号
摘要
The influence of a time-dependent transformation to a numerical method is studied. Thus convergence results of backward differentiation formulas applied to the non-autonomous stiff system y′ = A(t)y + Φ(t) are given. The approach is based on a special decomposition of the companion matrix.
引用
收藏
页码:1039 / 1048
页数:9
相关论文
共 12 条
[1]  
Auzinger W.(1992)An extension of B-convergence for Runge-Kutta methods Appl. Numer. Math. 9 91-109
[2]  
Frank R.(1996)Extending convergence theory for nonlinear stiff problems. Part I BIT 36 635-652
[3]  
Kirlinger G.(1966)On the convergence of numerical solutions to ordinary differential equations Math. Comput. 20 1-10
[4]  
Auzinger W.(2001)A normal form for multistep companion matrices M3AS 11 57-70
[5]  
Frank R.(1991)On the convergence of multistep methods for nonlinear stiff differential equations Numer. Math. 58 839-853
[6]  
Kirlinger G.(1996)Invariant manifolds and global error estimates of numerical integration schemes applied to stiff systems of singular perturbation type-Part II: Linear multistep methods Numer. Math. 74 305-323
[7]  
Butcher C.(undefined)undefined undefined undefined undefined-undefined
[8]  
Eder A.(undefined)undefined undefined undefined undefined-undefined
[9]  
Kirlinger G.(undefined)undefined undefined undefined undefined-undefined
[10]  
Lubich C.(undefined)undefined undefined undefined undefined-undefined