Robust H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\infty }$$\end{document} synchronization of chaotic systems with unmatched disturbance and time-delay

被引:0
作者
Yuechao Ma
Yanhui Jing
机构
[1] Yanshan University,College of Science
关键词
Chaotic systems; Robust ; synchronization; Time-delay; Linear matrix inequality;
D O I
10.1007/s13042-015-0468-9
中图分类号
学科分类号
摘要
This paper deals with master-slave robust H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\infty }$$\end{document} synchronization of identical chaotic systems with the disturbance and time-delay via state feedback control, but the uncertain disturbance of the slave system is different from the master system. The sufficient conditions for achieving synchronization of two chaotic systems are derived on the basis of the Lyapunov theory and the linear matrix inequality technique, which is not only to guarantee the asymptotic synchronization but also to attenuate the effects of the perturbation on the overall error system to a prescribed level. Finally, an illustrative numerical simulation is also given to demonstrate the effectiveness of the proposed scheme.
引用
收藏
页码:929 / 939
页数:10
相关论文
共 84 条
  • [1] Lorenz EN(1963)Deterministic nonperiodic flow J Atmos Sci 20 130-undefined
  • [2] Chen G(1999)Yet another chaotic attractor Int J Bifurc Chaos 9 1465-undefined
  • [3] Ueta T(1986)Hyperchaos: laboratory experiment and numerical confirmation IEEE Trans Circuits Syst 33 1143-undefined
  • [4] Matsumoto T(2005)Generating hyperchaos via state feedback control Int J Bifurc Chaos 15 3367-undefined
  • [5] Chua LO(2005)Controlling hyperchaos in the new hyperchaotic Chen system Appl Math Comput 168 1239-undefined
  • [6] Kobayashi K(2004)On an optimal control design for Phys Lett A 333 241-undefined
  • [7] Li Y(2002) system Chaos Solitons Fractals 14 643-undefined
  • [8] Tang SK(2012)Synchronization of an uncertain unified chaotic system via adaptive control Commun Nonlinear Sci Numer Simul 17 341-undefined
  • [9] Chen G(1990)Sliding mode control for uncertain chaotic systems with input nonlinearity Phys Rev Lett 64 821-undefined
  • [10] Yan Z(2007)Synchronization in chaotic systems Appl Math Comput 186 923-undefined