On the Darboux problem involving the distributional Henstock–Kurzweil integral

被引:0
|
作者
Guoju Ye
Rong Cheng
Wei Liu
Hui Mei
机构
[1] Hohai University,College of Science
[2] Nanjing Hexi Foreign Language School,undefined
来源
Boundary Value Problems | / 2018卷
关键词
Darboux problem; Distributional Henstock–Kurzweil integral; Measure of noncompactness; Darbo fixed point theorem; 47H08; 26A39;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we apply the method associated with the technique of measure of noncompactness and the Darbo fixed point theorem to study the existence of solutions of the Darboux problem involving the distributional Henstock–Kurzweil integral. Meanwhile, an example is provided to illustrate our results.
引用
收藏
相关论文
共 50 条
  • [41] Generalised Henstock- Kurzweil Integral with Multiple Point
    Thange, T. G.
    Gangane, S. S.
    BAGHDAD SCIENCE JOURNAL, 2023, 20 (01) : 388 - 393
  • [42] Denjoy integral and Henstock-Kurzweil integral in vector lattices, I
    Toshiharu Kawasaki
    Czechoslovak Mathematical Journal, 2009, 59 : 381 - 399
  • [43] Second order three boundary value problem in Banach spaces via Henstock and Henstock-Kurzweil-Pettis integral
    Satco, B.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) : 919 - 933
  • [44] DENJOY INTEGRAL AND HENSTOCK-KURZWEIL INTEGRAL IN VECTOR LATTICES, II
    Kawasaki, Toshiharu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (02) : 401 - 417
  • [45] The sequential Henstock-Kurzweil delta integral on time scales
    Liu, Yang
    Shao, Yabin
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [46] Differential and integral equations with Henstock-Kurzweil integrable functions
    Heikkila, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (01) : 171 - 179
  • [47] The Fuzzy Henstock-Kurzweil Delta Integral on Time Scales
    Zhao, Dafang
    Ye, Guoju
    Liu, Wei
    Torres, Delfim F. M.
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, 2018, 230 : 525 - 541
  • [48] A MULTIDIMENSIONAL INTEGRATION BY PARTS FORMULA FOR THE HENSTOCK-KURZWEIL INTEGRAL
    Lee, Tuo-Yeong
    MATHEMATICA BOHEMICA, 2008, 133 (01): : 63 - 74
  • [49] A Fubini Theorem in Riesz spaces for the Kurzweil-Henstock Integral
    Boccuto, A.
    Candeloro, D.
    Sambucini, A. R.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2011, 9 (03): : 283 - 304
  • [50] Set-valued Kurzweil-Henstock-Pettis integral
    Di Piazza, L
    Musial, K
    SET-VALUED ANALYSIS, 2005, 13 (02): : 167 - 179