N–S Systems via Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}$$\end{document}–Q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}^{-1}$$\end{document} Spaces

被引:0
作者
Jie Xiao
Junjie Zhang
机构
[1] Memorial University,Department of Mathematics and Statistics
[2] Beijing Jiaotong University,Department of Mathematics
关键词
N–S systems; –; spaces; Mild–null solutions; 30H25; 35Q30; 42B37; 46E35;
D O I
10.1007/s12220-018-0048-9
中图分类号
学科分类号
摘要
Under (α,p,n-1)∈(-∞,1)×(2,∞)×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,p,n-1)\in (-\infty ,1)\times (2,\infty )\times {\mathbb {N}}$$\end{document}, this paper uses Qα(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}_\alpha ({\mathbb {R}}^n)$$\end{document} and Qα-1(Rn):=div(Qα(Rn))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Q}^{-1}_{\alpha }(\mathbb R^n):=\hbox {div}\big (\mathcal {Q}_{\alpha }({\mathbb {R}}^{n})\big )^n$$\end{document} (covering BMO(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{BMO}({\mathbb {R}}^n)$$\end{document} and BMO-1(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{BMO}^{-1}({\mathbb {R}}^n)$$\end{document}) where f∈Qα(Rn)⇔∫Rn|f(x)|1+|x|n+1dx<∞andsupcoordinatecubesI∬I×(0,ℓ(I))|∇et2Δf(x)|2ωαtℓ(I)tn-1dxdt12<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f\in \mathcal {Q}_\alpha ({\mathbb {R}}^{n}) \Leftrightarrow \int \nolimits _{\mathbb R^n}\frac{|f(x)|}{1+|x|^{n+1}}\,\mathrm{d}x<\infty \ \ \mathrm{and} \ \ \underset{\mathrm{coordinate}\, \mathrm{cubes}\, I}{\sup }\left( \iint \nolimits _{I\times (0,\ell (I))}|\nabla e^{t^2\Delta }f(x)|^2\right. \left. \frac{\omega _{\alpha }\left( \frac{t}{\ell (I)}\right) }{t^{n-1}}{\mathrm{d}x\mathrm{d}t}\right) ^\frac{1}{2}<\infty $$\end{document} with (0,1]∋s↦ωα(s)=snasα∈(-∞,0);sn(lnes)2asα=0;sn-2αasα∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (0,1]\ni s\mapsto \omega _\alpha (s)={\left\{ \begin{array}{ll} s^n\quad &{}\hbox {as}\quad \alpha \in (-\infty ,0);\\ s^n\big (\ln \frac{e}{s}\Big )^2\quad &{}\hbox {as}\quad \alpha =0;\\ s^{n-2\alpha }\quad &{}\hbox {as}\quad \alpha \in (0,1), \end{array}\right. }$$\end{document} to demonstrate that the incompressible Navier–Stokes system Δu-(u·∇)u+∇p=∂tuanddivu=0inR+1+n;u(0,x)=a(x)asx∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\{ \begin{array}{ll} \Delta u-(u \cdot \nabla ) u+\nabla \mathrm{p}=\partial _t u\ \ \mathrm{and}\ \ \hbox {div}\,u=0 &{} \text {in } {\mathbb {R}}^{1+n}_+;\\ u(0,x)=a(x) &{} \text {as } x\in {\mathbb {R}}^{n} \end{array}\right. }$$\end{document} has a unique mild solution under ‖a‖(Qα-1(Rn))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert a\Vert _{\big (\mathcal {Q}_\alpha ^{-1}({\mathbb {R}}^n)\big )^n}$$\end{document} being sufficiently small; however, its steady stateΔu-(u·∇)u+∇p=0anddivu=0inRn;u(x)→0as∞←x∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left\{ \begin{array}{ll} \Delta u-(u \cdot \nabla ) u+\nabla \mathrm{p}=0\ \ \mathrm{and}\ \ \hbox {div}\,u=0 &{} \text {in } {\mathbb {R}}^{n};\\ u(x)\rightarrow 0 &{} \text {as}\ \infty \leftarrow x\in {\mathbb {R}}^{n} \end{array}\right. }$$\end{document} has only zero solution under u∈(BMO-1(Rn)∩Lp,p(n-2)2(Rn))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in \big (\mathrm{BMO}^{-1}(\mathbb R^n)\cap \mathscr {L}^{p,\frac{p(n-2)}{2}}({\mathbb {R}}^n)\big )^n$$\end{document}.
引用
收藏
页码:1490 / 1519
页数:29
相关论文
共 48 条
  • [1] Bourgain J(2008)Ill-posedness of the Navier-Stokes equations in a critical space in 3D J. Funct. Anal. 255 2233-2247
  • [2] Pavlović N(2016)On Liouville type theorems for steady Navier-Stokes equations in J. Differ. Equ. 261 5541-5560
  • [3] Chae D(2004)Some new tent spaces and duality theorems for fractional Carleson measures and J. Funct. Anal. 208 377-422
  • [4] Wolf J(2005)The dyadic structure and atomic decomposition of Tohoku Math. J. 57 119-145
  • [5] Dafni G(2003) spaces in several variables Uspekhi Mat. Nauk. 58 3-615
  • [6] Xiao J(2000)-solutions of Navier-Stokes equations and backward uniqueness Indiana Univ. Math. J. 49 575-193
  • [7] Dafni G(1972) spaces of several real variables Acta Math. 129 137-1891
  • [8] Xiao J(2016) spaces of several variables Mediterr. J. Math. 13 1885-4
  • [9] Escauriaza L(2017)A note on boundedness of the Hardy-Littlewood maximal operator on Morrey spaces Dyn. Partial Differ. Equ. 14 1-703
  • [10] Seregin G(2016)Small Anal. Appl. 14 679-426