Harnack Inequalities for Jump Processes

被引:0
作者
Richard F. Bass
David A. Levin
机构
[1] University of Connecticut,Department of Mathematics
来源
Potential Analysis | 2002年 / 17卷
关键词
Harnack inequality; jump processes; stable processes; Lévy systems; integral equations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of pure jump Markov processes in Rd whose jump kernels are comparable to those of symmetric stable processes. We establish a Harnack inequality for nonnegative functions that are harmonic with respect to these processes. We also establish regularity for the solutions to certain integral equations.
引用
收藏
页码:375 / 388
页数:13
相关论文
共 50 条
[21]   Extended Harnack inequalities with exceptional sets and a boundary Harnack principle [J].
Hiroaki Aikawa .
Journal d'Analyse Mathématique, 2014, 124 :83-116
[22]   Differential Harnack inequalities on path space [J].
Haslhofer, Robert ;
Kopfer, Eva ;
Naber, Aaron .
ADVANCES IN MATHEMATICS, 2022, 410
[23]   HARNACK AND MEAN VALUE INEQUALITIES ON GRAPHS [J].
林勇 ;
宋宏业 .
Acta Mathematica Scientia, 2018, 38 (06) :1751-1758
[24]   Harnack type inequalities for matrices in majorization [J].
Yang, Chaojun ;
Zhang, Fuzhen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 :196-209
[25]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[26]   COUPLING AND HARNACK INEQUALITIES FOR SIERPINSKI CARPETS [J].
BARLOW, MT ;
BASS, RF .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :208-212
[27]   Harnack inequalities on manifolds with boundary and applications [J].
Wang, Feng-Yu .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (03) :304-321
[28]   HARNACK AND MEAN VALUE INEQUALITIES ON GRAPHS [J].
Lin, Yong ;
Song, Hongye .
ACTA MATHEMATICA SCIENTIA, 2018, 38 (06) :1751-1758
[29]   Transition probabilities for symmetric jump processes [J].
Bass, RF ;
Levin, DA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (07) :2933-2953
[30]   On the relation between elliptic and parabolic Harnack inequalities [J].
Hebisch, W ;
Saloff-Coste, L .
ANNALES DE L INSTITUT FOURIER, 2001, 51 (05) :1437-+