On a class of non-local operators in conformal geometry

被引:0
作者
Sun Yung Alice Chang
Ray A. Yang
机构
[1] Princeton University,Mathematics Department
来源
Chinese Annals of Mathematics, Series B | 2017年 / 38卷
关键词
High order fractional GJMS operator; Generalized boundary Yamabe problem; Sobolov trace extension; 53A30; 58J05; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this expository article, the authors discuss the connection between the study of non-local operators on Euclidean space to the study of fractional GJMS operators in conformal geometry. The emphasis is on the study of a class of fourth order operators and their third order boundary operators. These third order operators are generalizations of the Dirichlet-to-Neumann operator.
引用
收藏
页码:215 / 234
页数:19
相关论文
共 27 条
[1]  
Beckner W.(1993)Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality Ann. of Math. (2) 138 213-242
[2]  
Branson T. P.(1995)Sharp inequalities, the functional determinant, and the complementary series Trans. Amer. Math. Soc. 347 3671-3742
[3]  
Chang S. Y. A.(2011)María del Mar, Fractional Laplacian in conformal geometry Adv. Math. 226 1410-1432
[4]  
González S.(2007)An extension problem related to the fractional Laplacian Comm. Partial Differential Equations 32 1245-1260
[5]  
Caffarelli L.(2002)Q-curvature and Poincaré metrics Math. Res. Lett. 9 139-151
[6]  
Silvestre L.(2013)Fractional conformal Laplacians and fractional Yamabe problems Anal. PDE 6 1535-1576
[7]  
Fefferman C.(1999)The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE Comm. Math. Phys. 207 131-143
[8]  
Graham C. R.(2003)Scattering matrix in conformal geometry Invent. Math. 152 89-118
[9]  
González M. M.(2016)Q curvature on a class of 3 manifolds Comm. Pure Appl. Math. 69 734-744
[10]  
Qing J.(1995)The spectrum of an asymptotically hyperbolic Einstein manifold Comm. Anal. Geom. 3 253-271