Two-layer flow of uniformly rotating immiscible second-grade and viscous fluid layers

被引:0
|
作者
Sammar Bashir
Muhammad Sajid
Muhammad Noveel Sadiq
机构
[1] International Islamic University,Department of Mathematics and Statistics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This study reveals the flow of two immiscible uniformly rotating layers of second-grade and viscous fluids. The second-grade fluid in the upper layer is rotating with angular velocity ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega_{1}$$\end{document} over another immiscible viscous fluid layer rotating with angular velocity ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega_{2}$$\end{document}. The flows are co-rotating at σ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma > 0$$\end{document} and counter-rotating at σ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma < 0$$\end{document}, where σ=ω2/ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma = \omega_{2} /\omega_{1}$$\end{document} (angular velocities ratio). The parameter limitation that σ2ρ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma^{2} \rho = 1$$\end{document} causes the similarity solutions to exist over a flat interface at z=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z = 0$$\end{document}, where ρ=ρ2/ρ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho = \rho_{2} /\rho_{1}$$\end{document} (densities ratio). A well-known finite-difference technique called the Keller–Box method is applied to solve the resultant system of nonlinear ODEs. The numerical results show that similarity solutions are present for all co-rotating flows (i.e., 0≤σ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \sigma \le 1$$\end{document}) but solutions exist only up to the critical values of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} in the case of counter-rotation (i.e., σc≤σ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{\rm c}} \le \sigma \le 1$$\end{document}) this is due to the creation of a large shear flow across the interface. The prime objective of the current article is to investigate and address certain important flow characteristics such as recirculation regions, inward and outward “wall” jets, the creation of strong shear flow across the interface, and the relationship of inflow/outflow behavior with the oceanographic context under the impact of second-grade fluid parameter K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1}$$\end{document}, fluid viscosity ratio μ=μ2/μ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu = \mu_{2} /\mu_{1}$$\end{document}, and angular velocities ratio σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} that are very important in scientific and industrial applications.
引用
收藏
相关论文
共 50 条
  • [11] On the steady flow of a second-grade fluid between two coaxial porous cylinders
    Erdogan, M. Emin
    Imrak, C. Erdem
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2007, 2007
  • [12] MHD squeezing flow of second-grade fluid between two parallel disks
    Hayat, T.
    Yousaf, Arshia
    Mustafa, M.
    Obaidat, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 69 (02) : 399 - 410
  • [13] SECOND-GRADE MAGNETOHYDRODYNAMIC FLUID FLOW IN POROUS MEDIA
    Mohyuddin, Muhammad R.
    Islam, S.
    Hussain, A.
    Siddiqui, A. M.
    JOURNAL OF POROUS MEDIA, 2010, 13 (11) : 1033 - 1037
  • [14] ANALYTICAL SOLUTIONS OF POISEUILLE FLOW OF SECOND-GRADE FLUID
    Kanuri, Venkat Rao
    Sekhar, K. V. Chandra
    Brahmanandam, P. S.
    Ramanaiah, J. V.
    JOURNAL OF NAVAL ARCHITECTURE AND MARINE ENGINEERING, 2024, 21 (01): : 67 - 77
  • [15] New Exact Solutions for MHD Transient Rotating Flow of a Second-Grade Fluid in a Porous Medium
    Salah, Faisal
    Aziz, Zainal Abdul
    Ching, Dennis Ling Chuan
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [16] Incipient mixing by Marangoni effects in slow viscous flow of two immiscible fluid layers
    Rickett, Lydia M.
    Penfold, Robert
    Blyth, Mark G.
    Purvis, Richard
    Cooker, Mark J.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (05) : 1582 - 1618
  • [17] Incipient mixing by Marangoni effects in slow viscous flow of two immiscible fluid layers
    Penfold, Robert (robert.penfold@ifr.ac.uk), 1600, Oxford University Press (80):
  • [18] SELECTIVE WITHDRAWAL OF A TWO-LAYER VISCOUS FLUID
    Cosgrove, Jason M.
    Forbes, Lawrence K.
    ANZIAM JOURNAL, 2012, 53 (04): : 253 - 277
  • [19] Plumes in a rotating two-layer stratified fluid
    Ma, Yongxing
    Flynn, Morris R.
    Sutherland, Bruce R.
    ENVIRONMENTAL FLUID MECHANICS, 2020, 20 (01) : 103 - 122
  • [20] Peaceman-Rachford ADI scheme for the two dimensional flow of a second-grade fluid
    Momoniat, E.
    Harley, C.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2012, 22 (02) : 228 - 242