Two-layer flow of uniformly rotating immiscible second-grade and viscous fluid layers

被引:0
|
作者
Sammar Bashir
Muhammad Sajid
Muhammad Noveel Sadiq
机构
[1] International Islamic University,Department of Mathematics and Statistics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This study reveals the flow of two immiscible uniformly rotating layers of second-grade and viscous fluids. The second-grade fluid in the upper layer is rotating with angular velocity ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega_{1}$$\end{document} over another immiscible viscous fluid layer rotating with angular velocity ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega_{2}$$\end{document}. The flows are co-rotating at σ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma > 0$$\end{document} and counter-rotating at σ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma < 0$$\end{document}, where σ=ω2/ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma = \omega_{2} /\omega_{1}$$\end{document} (angular velocities ratio). The parameter limitation that σ2ρ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma^{2} \rho = 1$$\end{document} causes the similarity solutions to exist over a flat interface at z=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z = 0$$\end{document}, where ρ=ρ2/ρ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho = \rho_{2} /\rho_{1}$$\end{document} (densities ratio). A well-known finite-difference technique called the Keller–Box method is applied to solve the resultant system of nonlinear ODEs. The numerical results show that similarity solutions are present for all co-rotating flows (i.e., 0≤σ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \sigma \le 1$$\end{document}) but solutions exist only up to the critical values of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} in the case of counter-rotation (i.e., σc≤σ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{{\rm c}} \le \sigma \le 1$$\end{document}) this is due to the creation of a large shear flow across the interface. The prime objective of the current article is to investigate and address certain important flow characteristics such as recirculation regions, inward and outward “wall” jets, the creation of strong shear flow across the interface, and the relationship of inflow/outflow behavior with the oceanographic context under the impact of second-grade fluid parameter K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1}$$\end{document}, fluid viscosity ratio μ=μ2/μ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu = \mu_{2} /\mu_{1}$$\end{document}, and angular velocities ratio σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} that are very important in scientific and industrial applications.
引用
收藏
相关论文
共 50 条
  • [1] Two-layer flow of uniformly rotating immiscible second-grade and viscous fluid layers
    Bashir, Sammar
    Sajid, Muhammad
    Sadiq, Muhammad Noveel
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (12):
  • [2] Flow of two immiscible uniformly rotating micropolar and viscous fluid layers
    Bashir, Sammar
    Sajid, Muhammad
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (11):
  • [3] Flow of two immiscible uniformly rotating couple stress fluid layers
    Bashir, Sammar
    Sajid, Muhammad
    PHYSICS OF FLUIDS, 2022, 34 (06)
  • [4] Steady flow of one uniformly rotating fluid layer above another immiscible uniformly rotating fluid layer
    Weidman, P. D.
    Turner, M. R.
    PHYSICAL REVIEW FLUIDS, 2019, 4 (08)
  • [5] Unsteady Mixed Convection Flow of a Rotating Second-Grade Fluid on a Rotating Cone
    Nadeem, S.
    Saleem, S.
    HEAT TRANSFER-ASIAN RESEARCH, 2014, 43 (03): : 204 - 220
  • [6] Interfacial dynamics of two immiscible second-grade and couple stress fluids in rotating and counter-rotating scenarios
    Bashir, Sammar
    Sajid, Muhammad
    FLUID DYNAMICS RESEARCH, 2024, 56 (03)
  • [7] Two-layer flows of generalized immiscible second grade fluids in a rectangular channel
    Luo, Liang
    Shah, Nehad Ali
    Alarifi, Ibrahim M.
    Vieru, Dumitru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (03) : 1337 - 1348
  • [8] MHD Effects on the Flow of Second-Grade Fluid Sandwiched between Two Newtonian Fluid Layers through Porous Medium
    Satya Satish Kumar
    A. N. Deo
    Colloid Journal, 2022, 84 : 794 - 805
  • [9] MHD Effects on the Flow of Second-Grade Fluid Sandwiched between Two Newtonian Fluid Layers through Porous Medium
    Kumar, Satish
    Deo, Satya
    Filippov, A. N.
    COLLOID JOURNAL, 2022, 84 (06) : 794 - 805
  • [10] Electromagnetic flow for two-layer immiscible fluids
    Abd Elmaboud, Y.
    Abdelsalam, Sara, I
    Mekheimer, Kh S.
    Vafai, Kambiz
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2019, 22 (01): : 237 - 248