A torsion-based solution to the hyperbolic regime of the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document}-problem

被引:0
作者
Martin Lara
Alessandro Masat
Camilla Colombo
机构
[1] University of La Rioja,Scientific Computation and Technical Innovation Center
[2] Politecnico di Milano,Department of Aerospace Science and Technology
关键词
Hamiltonian mechanics; Canonical perturbation theory; Perturbed Keplerian motion; Torsion; Unbounded orbits; Flyby;
D O I
10.1007/s11071-023-08325-w
中图分类号
学科分类号
摘要
A popular intermediary in the theory of artificial satellites is obtained after the elimination of parallactic terms from the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document}-problem Hamiltonian. The resulting quasi-Keplerian system is in turn converted into the Kepler problem by a torsion. When this reduction process is applied to unbounded orbits, the solution is made of Keplerian hyperbolae. For this last case, we show that the torsion-based solution provides an effective alternative to the Keplerian approximation customarily used in flyby computations. Also, we check that the extension of the torsion-based solution to higher orders of the oblateness coefficient yields the expected convergence of asymptotic solutions to the true orbit.
引用
收藏
页码:9377 / 9393
页数:16
相关论文
共 64 条
  • [61] Li M-C(undefined)undefined undefined undefined undefined-undefined
  • [62] Gan J-Y(undefined)undefined undefined undefined undefined-undefined
  • [63] Li Q(undefined)undefined undefined undefined undefined-undefined
  • [64] Lan Z-Z(undefined)undefined undefined undefined undefined-undefined