A torsion-based solution to the hyperbolic regime of the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document}-problem

被引:0
作者
Martin Lara
Alessandro Masat
Camilla Colombo
机构
[1] University of La Rioja,Scientific Computation and Technical Innovation Center
[2] Politecnico di Milano,Department of Aerospace Science and Technology
关键词
Hamiltonian mechanics; Canonical perturbation theory; Perturbed Keplerian motion; Torsion; Unbounded orbits; Flyby;
D O I
10.1007/s11071-023-08325-w
中图分类号
学科分类号
摘要
A popular intermediary in the theory of artificial satellites is obtained after the elimination of parallactic terms from the J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document}-problem Hamiltonian. The resulting quasi-Keplerian system is in turn converted into the Kepler problem by a torsion. When this reduction process is applied to unbounded orbits, the solution is made of Keplerian hyperbolae. For this last case, we show that the torsion-based solution provides an effective alternative to the Keplerian approximation customarily used in flyby computations. Also, we check that the extension of the torsion-based solution to higher orders of the oblateness coefficient yields the expected convergence of asymptotic solutions to the true orbit.
引用
收藏
页码:9377 / 9393
页数:16
相关论文
共 64 条
  • [1] Brouwer D(1959)Solution of the problem of artificial satellite theory without drag Astro. J. 64 378-397
  • [2] Coffey S(1984)An analytical orbit prediction program generator J. Guid. Control Dyn. 7 575-581
  • [3] Alfriend KT(2019)General characteristics of the motion on J. Guid. Control Dyn. 42 2319-2324
  • [4] Dang Z(1969)-perturbed equatorial orbits Celest. Mech. 1 12-30
  • [5] Luo J(1981)Canonical transformations depending on a small parameter Celest. Mech. 24 111-153
  • [6] Shi P(1970)The elimination of the parallax in satellite theory Celest. Mech. 2 166-206
  • [7] Zhang H(1999)The main problem of artificial satellite theory for small and moderate eccentricities Celest. Mech. Dyn. Astron. 74 175-197
  • [8] Deprit A(2022)Poincaré’s méthode nouvelle by skew composition Nonlinear Dyn. 107 1529-1544
  • [9] Deprit A(1976)Nonlinear dynamics of a base-isolated beam under turbulent wind flow J. Math. Phys. 17 2215-2227
  • [10] Deprit A(2010)Lie series and invariant functions for analytic symplectic maps J. Geom. Mech. 2 223-241