In this paper, we introduce the concept of generalized cyclic contraction pairs in b-metric spaces. We establish some fixed point results on b-metric spaces and also give some examples to illustrate the main results. As applications, we show the existence of a common solution for the following system of integral equations: x(t)=∫abK1(t,r,x(r))dr,x(t)=∫abK2(t,r,x(r))dr,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} x(t) = \int ^b_a K_1(t,r,x(r))\mathrm{d}r,\\ x(t) = \int ^b_a K_2(t,r,x(r))\mathrm{d}r, \end{array}\right. } \end{aligned}$$\end{document}where a,b∈R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a, b \in \mathbb {R}$$\end{document} with a<b\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a<b$$\end{document}, x∈C[a,b]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x \in C[a,b]$$\end{document} (the set of all continuous real value functions defined on [a,b]⊆R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[a,b] \subseteq \mathbb {R}$$\end{document}) and K1,K2:[a,b]×[a,b]×R→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_1, K_2 : [a,b] \times [a,b] \times \mathbb {R} \rightarrow \mathbb {R}$$\end{document} are mappings.