Mathematical modelling of enzyme kinetics reaction mechanisms and analytical solutions of non-linear reaction equations

被引:0
作者
A. Meena
A. Eswari
L. Rajendran
机构
[1] The Madura College (Autonomous),Department of Mathematics
来源
Journal of Mathematical Chemistry | 2010年 / 48卷
关键词
Enzyme kinetics; Non-linear reaction equations; Variational iteration method; Michaelis–Menten kinetics;
D O I
暂无
中图分类号
学科分类号
摘要
The boundary value problem in basic enzyme reactions is formulated and approximate expressions for substrate and product concentrations are presented. He’s variational iteration method is used to give approximate and analytical solutions of non-linear reaction equations containing a non-linear term related to enzymatic reaction. The relevant analytical solutions for the substrate, enzyme, substrate-enzyme and product concentration profiles are discussed in terms of dimensionless reaction diffusion parameters K, λ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document}.
引用
收藏
页码:179 / 186
页数:7
相关论文
共 12 条
[1]  
He J.H.(2007)undefined J. Comput. Appl. Math. 207 3-undefined
[2]  
He J.H.(1999)undefined Int. J. Nonlinear Mech. 34 699-undefined
[3]  
Momani S.(2000)undefined Chaos Solitons Fractals 27 1119-undefined
[4]  
Abuasad S.(2005)undefined Nonlinear Phenomena 211 1-undefined
[5]  
Abdou M.A.(2006)undefined Chaos Solitons Fractals 29 108-undefined
[6]  
Soliman A.A.(2008)undefined J. Math. Chem. 44 849-undefined
[7]  
He J.H.(2008)undefined Sensors 8 4800-undefined
[8]  
Wu X.H.(undefined)undefined undefined undefined undefined-undefined
[9]  
Rajendran L.(undefined)undefined undefined undefined undefined-undefined
[10]  
Rahamathunissa G.(undefined)undefined undefined undefined undefined-undefined