Dirac flow on the 3-sphere

被引:0
作者
E. G. Malkovich
机构
[1] Sobolev Institute of Mathematics,
来源
Siberian Mathematical Journal | 2016年 / 57卷
关键词
Dirac flow; Ricci flow; spaces of constant curvature; Eguchi–Hanson metric; Hitchin flow;
D O I
暂无
中图分类号
学科分类号
摘要
We illustrate some well-known facts about the evolution of the 3-sphere (S3, g) generated by the Ricci flow. We define the Dirac flow and study the properties of the metric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar g = dt^2 + g(t)$$\end{document}, where g(t) is a solution of the Dirac flow. In the case of a metric g conformally equivalent to the round metric on S3 the metric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar g$$\end{document} is of constant curvature. We study the properties of solutions in the case when g depends on two functional parameters. The flow on differential 1-forms whose solution generates the Eguchi–Hanson metric was written down. In particular cases we study the singularities developed by these flows.
引用
收藏
页码:340 / 351
页数:11
相关论文
共 8 条
[1]  
Onda K.(2012)The Ricci flow on 3-dimensional Lie groups and 4-dimensional Ricci-flat manifolds Adv. Appl. Math. Sci. 11 133-159
[2]  
Gibbons G. W.(1979)Classification of gravitational instanton symmetries Comm. Math. Phys. 66 291-310
[3]  
Hawking S. W.(1979)Self-dual solutions to Euclidean gravity Ann. Phys. 120 82-106
[4]  
Eguchi T.(2011)Spin(7)-structures on complex linear bundles and explicit Riemannian metrics with holonomy group SU(4) Sb. Math. 202 467-493
[5]  
Hanson A. J.(2007)On the new examples of complete noncompact Spin(7)-holonomy metrics Sib. Math. J. 48 8-25
[6]  
Bazaĭkin Ya. V.(undefined)undefined undefined undefined undefined-undefined
[7]  
Malkovich E. G.(undefined)undefined undefined undefined undefined-undefined
[8]  
Bazaĭkin Ya. V.(undefined)undefined undefined undefined undefined-undefined