Algebraic K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\!$$\end{document}-theory and Grothendieck–Witt theory of monoid schemes

被引:0
|
作者
Jens Niklas Eberhardt
Oliver Lorscheid
Matthew B. Young
机构
[1] Max Planck Institute for Mathematics,Department of Mathematics and Statistics
[2] University of Groningen,undefined
[3] IMPA,undefined
[4] Utah State University,undefined
关键词
Monoid schemes; Algebraic ; -theory; Grothendieck–Witt theory; Projective bundle formula; Primary 19D10; Secondary 19G38;
D O I
10.1007/s00209-021-02919-z
中图分类号
学科分类号
摘要
We study the algebraic K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\!$$\end{document}-theory and Grothendieck–Witt theory of proto-exact categories of vector bundles over monoid schemes. Our main results are the complete description of the algebraic K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\!$$\end{document}-theory space of an integral monoid scheme X in terms of its Picard group Pic(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Pic}\,}}(X)$$\end{document} and pointed monoid of regular functions Γ(X,OX)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (X, {\mathcal {O}}_X)$$\end{document} and a complete description of the Grothendieck–Witt space of X in terms of an additional involution on Pic(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Pic}\,}}(X)$$\end{document}. We also prove space-level projective bundle formulae in both settings.
引用
收藏
页码:1407 / 1445
页数:38
相关论文
共 44 条