Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables

被引:0
作者
Yong-Feng Wu
Dong-jin Zhu
机构
[1] Tongling University,Department of Mathematics and Computer Science
[2] Anhui Normal University,College of Mathematics and Computer Science
来源
Journal of the Korean Statistical Society | 2010年 / 39卷
关键词
60F15; 60G50; Negatively orthant dependent random variable; Complete convergence; Complete moment convergence; convergence;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xnk, 1 ≤ k ≤ n, n ≥ 1} bean array of rowwise negatively orthant dependent random variables and let {an, n ≥ 1} be a sequence of positive real numbers with an ↑ ∞. The convergence properties of partial sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac1a_n\sum\nolimits_k = 1^n X_nk $$\end{document} are investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [Hu, T. C., Taylor R. L. (1997). On the strong law for arrays and for the bootstrap mean and variance. International Journal of Mathematics and Mathematical Sciences, 20(2), 375–382].
引用
收藏
页码:189 / 197
页数:8
相关论文
共 35 条
[1]  
Amini D M(2003)Complete convergence for negatively dependent random variables Journal of Applied Mathematics and Stochastic Analysis 16 121-126
[2]  
Bozorgnia A(1996)Limit theorems for dependent random variables World Congress Nonlinear Analysts 92 1639-1650
[3]  
Bozorgnia A(1988)On the rate of moment complete convergence of sample sums and extremes Bulletin of the Institute of Mathematics Academia Sinica 16 177-201
[4]  
Patterson R F(1981)Multivariate negative dependence Communications in Statistics-Theory and Methods 10 307-337
[5]  
Taylor R L(1971)Probability inequalities forsums of independent random variables Theory of Probability and its Applications 16 643-660
[6]  
Chow Y S(2008)Strong convergence rate of weighted sums for NOD sequences Acta Mathematica Scientia 28A 283-290
[7]  
Ebrahimi N(1947)Complete convergence and the law of large numbers Proceedings of the National Academy of Sciences 33 25-31
[8]  
Ghosh M(1997)On the strong law for arrays and for the bootstrap mean and variance International Journal of Mathematics and Mathematical Sciences 20 375-382
[9]  
Fuk D K(1983)Negative association of random variables with applications The Annals of Statistics 11 286-295
[10]  
Nagaev S V(2006)Strong laws of large numbers for weighted sums of negatively dependent random variables Journal of the Korean Mathematical Society 43 1325-1338