Well-posedness results for a class of semilinear time-fractional diffusion equations

被引:0
|
作者
Bruno de Andrade
Vo Van Au
Donal O’Regan
Nguyen Huy Tuan
机构
[1] Universidade Federal de Sergipe,Departamento de Matemática
[2] Duy Tan University,Institute of Fundamental and Applied Sciences
[3] Duy Tan University,Faculty of Natural Sciences
[4] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
[5] University of Science,Department of Mathematics and Computer Science
[6] Vietnam National University,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2020年 / 71卷
关键词
Well-posedness; Blowup; Fractional calculus; Nonlinear problem; 26A33; 33E12; 35B40; 35K70; 44A20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss an initial value problem for the semilinear time-fractional diffusion equation. The local well-posedness (existence and regularity) is presented when the source term satisfies a global Lipschitz condition. The unique continuation of solution and finite time blowup result are presented when the reaction terms are logarithmic functions (local Lipschitz types).
引用
收藏
相关论文
共 50 条
  • [1] Well-posedness results for a class of semilinear time-fractional diffusion equations
    de Andrade, Bruno
    Vo Van Au
    O'Regan, Donal
    Nguyen Huy Tuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [2] Well-Posedness of Time-Fractional Advection-Diffusion-Reaction Equations
    William McLean
    Kassem Mustapha
    Raed Ali
    Omar Knio
    Fractional Calculus and Applied Analysis, 2019, 22 : 918 - 944
  • [3] WELL-POSEDNESS OF TIME-FRACTIONAL ADVECTION-DIFFUSION-REACTION EQUATIONS
    McLean, William
    Mustapha, Kassem
    Ali, Raed
    Knio, Omar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 918 - 944
  • [4] Well-posedness and regularity results for a class of fractional Langevin diffusion equations
    Wang, Sen
    Zhou, Xian-Feng
    Jiang, Wei
    Pang, Denghao
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2675 - 2719
  • [5] Well-posedness and regularity results for a class of fractional Langevin diffusion equations
    Sen Wang
    Xian-Feng Zhou
    Wei Jiang
    Denghao Pang
    Fractional Calculus and Applied Analysis, 2023, 26 : 2675 - 2719
  • [6] WELL-POSEDNESS AND REGULARITY OF CAPUTO-HADAMARD TIME-FRACTIONAL DIFFUSION EQUATIONS
    Yang, Zhiwei
    Zheng, Xiangcheng
    Wang, Hong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [7] The well-posedness for semilinear time fractional wave equations on RN
    Zhou, Yong
    He, Jia Wei
    Alsaedi, Ahmed
    Ahmad, Bashir
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 2981 - 3003
  • [8] Local Well-posedness of Nonlinear Time-fractional Diffusion Equation
    Suechoei, Apassara
    Ngiamsunthorn, Parinya Sa
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 865 - 884
  • [9] Well-posedness of the stochastic time-fractional diffusion and wave equations and inverse random source problems
    Lassas, Matti
    Li, Zhiyuan
    Zhang, Zhidong
    INVERSE PROBLEMS, 2023, 39 (08)
  • [10] Well-Posedness and Asymptotic Estimate for a Diffusion Equation with Time-Fractional Derivative
    Li, Zhiyuan
    Huang, Xinchi
    Yamamoto, Masahiro
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (01) : 115 - 138