One-Sided Gorenstein Subcategories

被引:0
作者
Weiling Song
Tiwei Zhao
Zhaoyong Huang
机构
[1] Nanjing Forestry University,Department of Applied Mathematics, College of Science
[2] Qufu Normal University,School of Mathematical Sciences
[3] Nanjing University,Department of Mathematics
来源
Czechoslovak Mathematical Journal | 2020年 / 70卷
关键词
right Gorenstein subcategory; self-orthogonal subcategory; relative projective dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context; 18G25; 16E10; 18G10;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the right (left) Gorenstein subcategory relative to an additive subcategory C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr{C}$$\end{document} of an abelian category A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr{A}$$\end{document}, and prove that the right Gorenstein subcategory rG(G(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{G}(\mathscr{C})$$\end{document}) is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr{C}$$\end{document} is self-orthogonal, we give a characterization for objects in rG(G(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{G}(\mathscr{C})$$\end{document}), and prove that any object in A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr{A}$$\end{document} with finite rG(G(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{G}(\mathscr{C})$$\end{document})-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr{A}$$\end{document} with finite C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr{C}$$\end{document}-projective dimension to an object in rG(G(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{G}(\mathscr{C})$$\end{document}). As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr{A}$$\end{document} having enough injectives.
引用
收藏
页码:483 / 504
页数:21
相关论文
共 28 条
  • [1] Auslander M(1989)The homological theory of maximal Cohen-Macaulay approximations Mém. Soc. Math. Fr., Nouv. Sr. 38 5-37
  • [2] Buchweitz R-O(2002)Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension Proc. Lond. Math. Soc., III. Ser. 85 393-440
  • [3] Avramov L L(2006)On Gorenstein projective, injective and flat dimensions—a functorial description with applications J. Algebra 302 231-279
  • [4] Martsinkovsky A(2007)Gorenstein dimension of modules over homomorphisms J. Pure Appl. Algebra 208 177-188
  • [5] Christensen L W(1995)Gorenstein injective and projective modules Math. Z. 220 611-633
  • [6] Frankild A(2005)Covers and envelopes by Commun. Algebra 33 4705-4717
  • [7] Holm H(2011)-Gorenstein modules J. Algebra 325 132-146
  • [8] Christensen L W(2004)-Gorenstein modules J. Pure Appl. Algebra 189 167-193
  • [9] Iyengar S(2013)Gorenstein homological dimensions J. Algebra 393 142-169
  • [10] Enochs E E(2013)Proper resolutions and Gorenstein categories Commun. Algebra 41 1-18