Radiative neutralino decay \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\chi^{0}_{2}\longrightarrow\chi^{0}_{1}\gamma$\end{document} is studied in a Split Supersymmetric scenario, and compared with mSUGRA and MSSM. This one-loop process has a transition amplitude which is often quite small, but it has the advantage of providing a very clear and distinct signature: electromagnetic radiation plus missing energy. In Split Supersymmetry this radiative decay is in direct competition with the tree-level three-body decay \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\chi^{0}_{2}\longrightarrow\chi^{0}_{1}f\bar{f}$\end{document}, and we obtain large values for the branching ratio \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$B(\chi^{0}_{2}\longrightarrow\chi^{0}_{1}\gamma)$\end{document} which can be close to unity in the region M2∼M1, something already seen in the MSSM. Furthermore, the values for the radiative and the tree-level neutralino decay branching ratios have a strong dependence on the logarithm of the split supersymmetric scale \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\widetilde{m}$\end{document}, which otherwise is very difficult to infer from experimental observables.